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EXECUTIVE SUMMARY

1. GENERAL STRATEGY

The overall program embraces property profiles, manufacturing, design

and sensor development (Fig. 1) consistent with a concurrent engineering

philosophy. For this purpose, the program has created networks with the

other composites activities. Manufacturing research on MMCs is strongly

coupled with the 3M Model Factory and with the DARPA consolidation team.

Major links with Corning and SEP are being established for CMC

manufacturing. Design Team activities are coordinated by exchange visits, in

February/March. to Pratt and Whitney. General Electric, McDonnell

Douglas and Coming. Other visits and exchanges are being discussed.

These visits serve both as a critique of the research plan and as a means of

disseminating the knowledge acquired in 1992.

The program strategy concerned with design attempts to provide a

balance of effort between properties and design by having studies of

mechanisms and property profiles, which intersect with a focused activity

devoted to design problems (Fig. 2). The latter includes two foci, one on

MMCs and one on CMCs. Each focus reflects differences in the property

emphases required for design. The intersections with the mechanism

studies ensure that commonalties in behavior continue to be identified, and

also facilitate the efficient transfer of models between MMCs and CMCs.
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2. PROPERTY PROFILES

Each research activity concerned with properties begins with

experiments that identify the principal property-controlling phenomena.

Models are then developed that relate the physical response to constituent

properties. These models, when validated, provide the constitutive laws

required for calculating stress redistribution, failure and damage

progression. They also provide a solid physics and mechanics

understanding, which can be used to judge the effectiveness of the

simplified procedures needed for design purposes.

2.1 Fatigue

Studies of the propagation of dominant mode I fatigue cracks from

notches in MMCs, including the role of fiber bridging and fiber failure, have

been comprehensively addressed (Zok, McMeeking). Software programs that

include these effects have been developed. These are being transferred to

Pratt and Whitney and KAMAN Sciences. The effects of thermal cycling on

crack growth in MMCs have also been modelled (McMeeking). The results

highlight the opposing effects of cycling on matrix crack growth and fiber

failure (the fatigue threshold), when thermal cycles are superposed onto load

cycles. Notably, matrix crack growth is enhanced by out-of-phase

thernmomechanical cycling, but fiber failure is suppressed (and vice versa for

in-phase cycling). Experimental studies that examine these predictions are

planned (Zok).

Studies have also been conducted on systems that exhibit multiple

matrix cracking (Zok). The tensile stress-strain behavior of composites

containing such cracks is analogous to the behavior of unidirectional CMCs
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under monotonic tensile loading. As a result, models developed to describe

the tensile response of the CMCs have found utility in describing the MMCs.

However. two important differences in the two classes of composite have

been identified and are presently being addressed. The first deals with the

nature of the crack patterns. In the CMCs. the cracks are more or less

uniformly spaced and generally span across the entire composite section. In

contrast, the MMCs exhibit a broader distribution of crack sizes, many of

which are short compared with the specimen dimensions. Methodologies for

measurement and interpretation of crack densities in MMCs are being

developed. The second problem deals with degradation in the interfacial

sliding properties with cyclic sliding in the MMCs. Such degradation is

presently being studied using fiber push-out tests in fatigued specimens.

Thermal fatigue studies on MMCs subject to transverse loading have

been performed and have established the conditions that allow shakedown

(Leckie). The shakedown range is found to be strongly influenced by the

extent of matrix creep, which defines a temperature limitation on the use of

the material. The eventual outcome of this activity would be the

specification of parameters that ensure shakedown and avoid ratcheting.

The next challenge for MMCs concern the quantification of transitions

in fatigue behavior, especially those found at higher temperatures. These

include multiple matrix cracking and shear band formation. Experimental

studies are in progress which will be used to establish a mechanism map.

The map, when developed, would explicitly identify the transitions (Zok). The

analogous behavior found in CMCs will facilitate this development. Other

high temperature phenomena to be explored include changes in the

interfacial sliding behavior due to both relaxations in the thermal residual

stresses and the growth of reaction products near the fiber-matrix interface.
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Fatigue damage studies on 2-D CMCs will focus on interface and fiber

degradation phenomena. especially at elevated temperatures (Evans, Zok).

Cyclic loading into the stress rangc at which matrix cracks exist is known to

modify the interface sliding stress and may weaken the fibers. These

degradation effects can be distinguished. because they change the

hysteresis loop and reduce the UTS, respectively. Experiments that probe

these material responses are planned. In addition, models that include the

influence f cyclic fiber failure and pull-out on fatigue damage will be

developed (Suo).

2.2 Matrix Cracking

Models of the plastic strain and modulus changes caused by various

modes of matrix cracking have been developed. These solutions have

provided a rationale for experimental studies on the tensile and shear

behavior of CMCs and on the fatigue of MMCs (Hutchinson. Zok. Evans,

Suo, Budiansky, McMeeking). The information has been used in two distinct

waw-. (i) Test methodologies have been devised that relate

str -,s/displacement measurements to constituent properties (Table I).

(ii) Stress/strain curves and matrix crack evolution have been simulated for

specific combinations of constituent properties.

The development of the procedures and their implementation are still in

progress. Independent solutions have been established for matrix cracks in

00 plies and 900 plies upon tensile loading. The former has been

experimentally validated on l-D material, (SiC/SiC and SiC/CAS).

Measurements of plastic strain, hysteresis loops and crack densities have

been checked against the models for consistency.
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TABLE I

Relevant Constituent Properties and Measurement Methods

CONSTITUENT PROPERTY MEASUREMENT

9 Pull-Out Length. S

* Saturation Crack Spacing. ls
Sliding Stress. t•

"" Systeresis Loop. 8 E 1/2

* Unloading Modulus. EL

* Fracture Mirrors
Characteristic Strength. Sc. m

"* Ultimate Strength. S

"* Bilayer Distortion

Misfit Strain. KI (q) * Permanent Strain, Ep

"* Residual Crack Opening

"• Monolithic Material

Matrix Fracture Energy, rm * Saturation Crack Spacing. ls

"* Matrix Cracking Stress. nmc

"• Permanent Strain. Ep

Debond Energy. rF
"* Residual Crack Opening
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The next challenge is to couple the models together in order to simulate

the evolution of matrix cracks in 2-D materials, subject to tensile loading

(Hutchinson, Budianskv). Related effects on the ultimate tensile strength

caused by stress concentrations in the fibers in the presence of matrix

cracks, would also be evaluated. Experimental measurements of

stress/strain behavior in 2-D CMCs, with concurrent observations of matrix

crack evolution, would be used to guide and validate such models (Evans.

Kedward).

2.3 Constitutive Equations

Constitutive equations provide the link between material behavior at

the meso-scale and the performance of engineering components. The

equations can be established from the results of uniaxial and transverse

tensile tests together with in-plane shear loading. For a complete

formulation, which describes accurately the growth of failure mechanisms

and the conditions of failure at the meso-scale, it is also necessary to

perform calculations which are valid at the micro-scale.

These procedures have been completed for metal-matrix composites

(Jansson. Leckie), and the resulting constitutive equations are operational

in the ABAQUS finite element code. The behavior of simple panels

penetrated by circular holes have been studied and the results await

comparison with experiments which are planned for the coming year. The

constitutive equations are formulated in terms of state variables which

include the hardeoing tensors and damage state variables which describe

debonding at the interface and void growth in the matrix. The format Is

sufficiently general to allow the inclusion of failure mechanisms such as

environmental attack as the appropriate understanding is available. For
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example, the effect of matrix and fiber creep mechanisms (Aravas) have also

been introduced into ABAQUS. and it is proposed to extend the creep

conditions to include the effects of variable loading and temperature.

A similar approach has been taken towards the modulus of CMCs. In

this case, efforts have been made to include the influence of matrix

cracking, in-plane shearing and fiber breakage. The latter consideration is

based on the global load sharing model (Hayhurst). The equations are also

available in ABAQUS. At present, matrix cracking is introduced by

assuming a matrix stress accompanied by an increase of strain. However.

based on the more recent understanding of the growth of matrix cracks

(above) it is intended to introduce these mechanisms into the constitutive

equations for CMCs.

2.4 Creep

The emphases of the creep investigations have been on the anisotropic

characteristics of unidirectional layers in which the fibers are elastic, but

the matrix creeps. Experiments and models of the longitudinal creep

properties of such materials •Ive been initiated (McMeeking, Leckle, Evans,

Zok. Aravas). The critical issues in this orientation concern the incidence of

fiber failure and the subsequent sliding response of the interface. A

modelling effort has established an approach that allows the stochastic

evolution of fiber failure to occur as stress is transferred onto the fibers by

matrix creep (McMeeking). This approach leads to creep rates with a large

power law exponent. Various attempts are underway to incorporate the

interface sliding Initiated by fiber breaks and to introduce sliding into the

creep rate formulation. Experiments being performed on unidirectional Ti

matrix materials are examining the incidence of fiber failures on the creep
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deformation (Evans. Leckie, Zok). These results will guide the modelling

effort concerned with interface sliding effects. Insight will also be gained

about fiber failure stochastics during creep, especially differences from room

temperature behavior.

The transverse creep properties are expected to have direct analogies

with composite deformation for a power law hardening matrix (Section 2.3).

In particular, the same effects of debonding and matrix damagcs arise and

can be incorporated in an equivalent manner (Leckie, Aravas). Testing is

being performed on Ti MMCs and on SiC/CAS to validate the models.

Experiments on Ti-matrix 07/900 cross-ply composites are planned.

Creep models appropriate to cross-ply materials will be developed by

combining those corresponding to the unidirectional materials in the

longitudinal and transverse orientations, using a rule-of-mixtures approach.

Such an approach is expected to be adequate for loadings in which the

principal stresses coincide with the fiber axes, Alternate approaches will be

sou.iht to describe the material response in other orientations.

Some CMCs contain fibers that creep more extensively than the matrix.

This creep deformation has been found to elevate the stress in the matrix

and cause time dependent evolution of matrix cracks. This coupled process

results in continuous creep deformation with relatively low creep ductility.

Experiments on such materials are continuing (Evans, Leckle) and a

modelling effort will be initiated (Suo). The models would include load

transfer into the nmatrix by creeping fibers, with sliding interfaces, leading to

enhanced matrix cracking.
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Tensile Strength

The ultimate strength (UTS) of both CMCs and MMCs (as well as fatigue

and creep thresholds) is dominated by fiber failure. With the global load

sharing (GLS) concept of fiber failure now well established, the recent

emphasis has been on defining the constituent properties needed to ensure

GLS. The approach has been to perform local load sharing calculations and

then compare experimental UTS data with the GLS predictions (Curtin.

Evans, Leckie). The situation is unresolved. However, initial calculations on

CMCs (Curtin) and MMCs (Evans) have provided some insight. Two key

remaining issues concern the magnitude of the stress concentration in

intact fibers caused by matrix cracks and the role of fiber pull-out in

alleviating those stresses. Calculations of these effects are planned

(Budiansky, Suo).

Degradation of the fiber strength upon either high temperature (creep)

testing, atmospheric exposure, or fatigue are other topics of interest.

Rupture testing performed under these conditions will be assessed in terms

of degradation in fiber properties.

3. DESIGN TEAMS

3.1 The Approach

The overall philosophy of the design effort is to eventually combine

material models, with a materials selector, and a data base, within a unified

software package (Prinz). One example of a composites data base is that

developed for MMCs by KAMAN Sciences, which forms the basis for a

potential collaboration. The materials selector has already been developed
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for monolithic materials (Ashby) and is available for purchase. This selector

requires expansion to incorporate phenomena that have special significance

for high temperature composites. including creep and thermal fatigue. These

new features will be developed and included in the advanced selector

software (Ashby).

The modelling approach is illustrated in Table II. Failure mechanisms

and their effect on material behavior have been introduced into constitutive

equations. The stress, strain and damage fields which develop in

components during the cycles of loading and temperature can then be

computed. Experiments shall be performed on simple components such as

holes in plates, and comparison made with the computational predictions.

Since constitutive equations are modeled using the results of coupon tests.

it is likely that additional failure modes shall come to light during

component testing. These mechanisms shall be studied and the appropriate

mechanics developed so that their influence is correctly factored into the

constitutive equations. In this way. increased confidence in the reliability of

the constitutive equations can be established in a systematic way.

In practice, it is most probable that the constitutive equations are too

complex for application at the creative level of the design process. It is then

that simple but reliable procedures are of greater use. Some success has

been achieved in this regard for MMCs subjected to cyclic mechanical and

thermal loading (Jansson, Ponter, Leckie), as well as for strength

calculations of CMC panels penetrated by holes (Suo) and the fatigue of

MMCs (Zok, McMeeking). In all cases simplifications are introduced after a

complete and reliable analysis has been completed which provides a

standard against which the effects of simplification can be assessed.
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3.2 Ceramic Matrix Composite Design

The design effort on CMCs will have its major focus on pin-loaded holes

used for attachments (Fig. 3). A smaller activity, expected to expand in

1994, will address delamination cracking. The hole design includes several

related topics. Each topic is concerned with aspects of constitutive law

development (Table III), highlighted during the study group. Combined

experimental and modelling efforts on the tensile properties of CMCs have

established that the plastic strains are dominated by matrix cracks in the 0'

plies, The matrix cracking models developed in the program demonstrate

that these strains are governed by four independent constituent properties

[(Table 1) c, fi, K and fm] which combine and interrelate through five non-

dimensional parameters (Table MI. This modelling background suggests a

concept for using model-based knowledge to develop constitutive laws. The

following steps are involved (Table III). (i) A model-based methodology for

inferring the constituent properties of unidirectional CMCs from

macroscopic stress/strain behavior has been devised and is being

experimentally tested on a range of materials (Evans). (ii) Upon validation.

the models would allow stress/strain curves to be simulated (Hutchinson).

This capability would facilitate a sensitivity study to be performed. in order

to determine the minimum number of independent parameters that

adequately represent the constitutive law. A strictly empirical law would

require 3 parameters (yield strength, hardening rate and unloading

modulus). Consequently, the objective might be to seek 3 combinations of

the 4 constituent properties. (iii) Experiments would be performed and

models developed that establish the matrix cracking sequence in 2-D

materials (Hutchinson, Evans, Kedward). These would be conducted on

14
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TABLE IV

Summary of Non-Dimensional Coefficients

.b = [f /(l- f)] 2 (E EL/Em)(ao t/RSu), Flaw index for Bridging

.q = (ao /h)(Sp /EL), Flaw Index for Pull-Out

9) = F.(-f) 2 Ef Em/f T2 EL R, Crack Spacing Index

H = b 2 (1-alf)2 R /4dTEm f 2 , Hysteresis Index

I = Up/E EM, Misfit Index

= 6zrmf 2 Ef /(A-f)E REL, Matrix Cracking Index

Q = Ep f Q / EL (1 - v), Residual Stress Index

A1 = (1/c, Q) VF/EmR, Debond Index
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CMCs with a range of different constituent properties and fiber

architectures. The plastic strains would be related to constituent properties

by adapting the l- im iodels.

The in-plane shear behavior will be characterized by performing

experiments and developing models of matrix cracking that govern the

plastic shear strain in 2-D CMC (Evans, Hutchinson, Bao). The information

will be used to establish the constitutive laws for in-plane shear, as well as

interlaminar shear. For continuity of interpolation between tension and

shear, the shear models will include the same constituent properties as

those used to represent the tensile behavior.

The model-based constitutive laws, based on matrix damage, will be

built into a CDM (continuum damage mechanics) formulation, compatible

with finite element codes %Hayhurst). Computations will be performed to

explore stress redistribution around holes and other strain concentration

sites. The calculations will establish visualizations of stress evolution that

can be compared with experimental measurements performed using the

SPATE method, as well as by Moir6 interferometry (Mackin, Evans). These

experiments will be on specimens with notches and holes, loaded in tension.

The comparisons between the measured and calculated stress patterns will

represent the ultimate validation of the constitutive law. The composite

codes, when validated, will be made available to industry.

Some preliminary experimental work will be performed on pin-loaded

holes. Damage patterns will be monitored and stress redistribution effects

assessed using SPATE (Kedward, Evans, Mackin). These experiments will be

conducted on SIC/CAS and SiC/C. The results will provide the focus for

future CDM computations, based on the constitutive law for the material.

18



Smaller scale activities will involve basic aspects of stress redistribution

around holes caused by fatigue and creep damage, using the experience

gained from the matrix cracking studies. Some experimental measurements

of these effects will be performed using SPATE (Zok, Evans).

Some delamination crack growth measurements and calculations are

also envisaged (Ashby, Kedward, Hutchinson). Cantilever beam and

C-specimens will be used for this purpose (Fig. 4). During such tests, crack

growth, multiple cracking and stiffness changes will be addressed. Models of

bridging by inclined fibers will be developed (Ashby) and used for

interpretation.

3.3 Metal Matrix Composite Design

The 3D constitutive equations for MMCs are now available for use in

the ABAQUS finite element code, and the immediate task Is to use these

equations to predict the behavior of representative components (Leckie). One

such system is a ring-type structure which is being studied together with

Pratt and Whitney. Clearly no experimental verification is possible with a

component of this scale, but the experience of Pratt and Whitney shall

provide invaluable input on the effectiveness of the calculations. A

component sufficiently simple to be tested is the panel penetrated by holes.

The holes shall be both unloaded and loaded (Jansson). and it is expected to

include the effects of cyclic mechanical and thermal loading.

It is proposed to develop simplified procedures which are based on

shakedown procedures (Jansson, Leckie). Demonstrations have already

been made of the effectiveness of the Gohfeld method (which uses only

simple calculations) in representing the behavior of MMCs subjected to

cyclic thermal loading.
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During the complex histories of stress and temperature. it is known

that the matrix-fiber interface properties change. Fatigue loading (Zok) is

know to decrease the interface sliding stress. Transverse creep appears to

cause matrix-fiber debonding (Jansson). which might result in loss of the

ability to transfer stress between matrix and fiber. It is intended to study

this effect of transverse creep on the integrity of the longitudinal strength of

the material by performing tests on panels which shall allow rotation of the

stress fields. A good understanding now exists of the fatigue properties of

MMCs (Zok). It is intended to extend the ideas developed from earlier

theoretical studies (McMeeking, Evans) to include cyclic thermal effects and

experimental programs on holes in plates.

4. MANUFACTURING

The activities in processing and manufacturing have had the following

foci:
" Matrix development to address specific requirements identified by the

design problems, particularly first matrix cracking in CMCs (Lange)

and creep strengthening in MMC/IMCs (Levi, Lucas).

" Hybrid architectures which offer possible solutions to environmental

degradation and thermal shock problems (Evans, Lange, Leckie, Levi,

Yang, Zok).

"* Software development that predicts and controls fiber damage and

interface properties during densification (Wadley).

"* Processing techniques to generate model MMC sub-elements (Leckie,

Levi, Yang).
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4.1 Metal Matrix Composites

Work on MMC matrix development has focused on dispersion

strengthening approaches to increase the transverse tensile and creep

strength of 1-D and 2-D fiber architectures. The initial work has emphasized

a model system, Cu/A12 03, wherein dispersoids are produced by internal

oxidation of a dilute Cu-Al alloy deposited by PVD onto sapphire fibers.

These are subsequently consolidated by HIP'ing. Specimens with fiber

volume fractions of 0.3 < f < 0.5 and 2-3% y-A120 3 dispersoids (- 20 nm in

size) have been produced in this manner and will be tested to assess their

transverse creep behavior. The new emphasis will be on higher temperature

matrices based on TiB dispersoids in Ti-(Cr/Mo)-B alloys (Levi). Initial

solidification studies have demonstrated the potential of these materials as

in-situ composites. Efforts are underway to develop sputtering capabilities to

implement this concept.

Fiber damage during densification of composite prepregs generated by

plasma-spray (GE) and PVD (3M) have also been emphasized (Wadley).

Interdiffusion studies coupled with push-out tests have been used to study

the evolution of reaction layers in Ti/SiC composites and their effect on the

relevant interfacial properties as a function of process parameters.

Additional efforts under other programs have focused cn developing

predictive models for fiber breakage during densification. The interdiffusion

and breakage models are being incorporated into software that predicts

pressure-temperature paths, which simultaneously minimize fiber damage

and control the interface properties.

The feasibility of producing MMC sub-elements consisting of fiber

reinforced rings (1-D) and tubes (2-D) has been demonstrated by using
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liquid metal infiltration of Al alloy matrices (Levi). These are presently

undergoing testing in combined tension/torsion modes. Future efforts will

be directed toward extending the technique to other shapes (e.g., plates with

reinforced holes), as well as devising methods to modify the (currently

strong) interfaces. The identification of methods that provide the appropriate

interfacial debonding/sliding characteristics should enable the use of these

composites as model systems for higher temperature MMCs. such as Ti.

4.2 Intermetallic Matrix Composites

The focus of the IMC processing activities has been on the synthesis of

MoSi2 /P-SiCp composites by solidification processing. These materials are of

interest as Dotential matrices for fiber composites. Significant progress was

made in the ciucidation of the relevant Mo-Si-C phase equilibria, the growth

mechanisms of SiC from the melt and their impact on reinforcement

morphology, as well as the orientation relationships between matrix and

reinforcements, and the interfacial structure. An amorphous C layer. !5 nm

thick, was found at the MoSi2 /SiC interface in the as cast condition, and

persisted after 12 h heat treatments at 15000 C. This interfacial layer has

been reproduced in a-SiCp/(MoSi 2 + C) composites produced by powder

metallurgy techniques and was found to exhibit promising debonding and

pull-out behavior during fracture (Levi). Future efforts are aimed at

implementing this in-situ coating concept in a-SiC fiber composites.

4.3 Ceramic Matrix Composites

The processing issues for creating CMCs with high matrix strength

continue to be explored (Lange, Evans). The basic concept is to create a

strong ceramic matrix framework within a fiber preform. by means of slurry
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infiltration followed by heat treatment. This stron" framework would then be

infiltrated by a polymer precursor and pyrolyzed to further densif. the

matrix. It has been demonstrated that strong matrices of Si3 N 4 can be

produced using this approach (Lange). Further work will address

relationships between matrix strength and microstructure (Lange, Evans).

4.4 Hybrids

These activities cover materials consisting of thin monolithic ceramic

layers alterna' with layers containing high strength fibers bonded by a

glass or metallic binder. The primary motivation behind this concept is the

potential for manufacturing shapes that have a high resistance to

environmental degradation and also have good thermal shock resistance.

The concept has been demonstrated using alumina plates and graphite

reinforced polymer prepregs (Lange). The availability of glass-ceramic

bonded SiCf prepregs and tape-cast SiC plates has facilitated the extension

of this technique to high temperature systems (Lange). Future assessment

will address new crack control concepts. These concepts would prevent

damage from propagating into the fiber reinforced layers, especially upon

thermal loading (Zok, Lange). If successful, this concept would allow the

development of hybrid CMCs which impart resistance to environmental

degradation, as well as high thermal strain tolerance.

Preliminary work has been performed on laminates consisting of

alumina plates and sapphire-fiber reinforced Cu monotapes (Levi). The latter

are produced by deposition of Cu on individual fibers which are

subsequently aligned and bonded by hot pressing between two Cu foils.

After suitable surface preparation, the alumina/monotape assemblies are
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bonded by hot pressing. Future work is aimed at implementing the concept

with Ni based alloys.

5. SENSORS

The principal challenge being addressed is the non-destructive and

non-evasive measurement of stresses In composites (Clarke. Wadley). The

motivation is to make detailed measurements of stresses in components for

incorporation into evolving design models, as well as validation of the stress

distributions computed by finite element methods. A major emphasis has

been placed on measuring the residual stresses in sapphire fibers in various

matrices, using the recently developed technique of optical fluorescence

spectroscopy. These measurements have provided data on the distribution

of residual thermal stresses in the fiber reinforcement, as a function of

depth below the surface. This approach will be extended, in conjunction

with finite element modelling (Hutchinson), to measure the stresses during

the process of fiber pull-out from a variety of metal and ceramic matrices.

Initial experiments indicate that such in-situ measurements are feasible.

The technique will also be applied to the measurement of the stresses

in sapphire fibers located In the vicinity of pin-loaded holes in order to

understand the manner in which the stresses redistribute during loading. It

Is anticipated that this measurement will provide information about the

detailed fiber loadings and also about the stresses that cause debonding of

the fibers from the matrix. Moreover, in support of the activities on thermal

ratcheting, the redistribution of stresses with thermal cycling will be

established. This will be accomplished by using the fluorescence technique

as well as Moir6 interferometry. based on lithographically defined features.
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Remarks on crack-bridging concepts
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The article draws upon recent work by us and our colleagues on metal and ceramic matrix
composites for high temperature engines. The central theme here is to deduce mechanical
properties, such as toughness, strength and notch-ductility, from bridging laws that characterize
inelastic processes associated with fracture. A particular set of normalization is introduced to
present the design charts, segregating the roles played by the shape, and the scale, of a bridging
law. A single material length, 450E / 0o, emerges, where .5 is the limiting-separation, (70 the
bridging-strength, and E the Young's modulus of the solid. It is the huge variation of this
length--from a few nanometers for atomic bond, to a meter for cross-over fibers--that underlies
the richness in material behaviors. Under small-scale bridging conditions, 60E / 00 is the only
basic length scale in the mechanics problem and represents, with a pre-factor about 0.4, the
bridging zone size. A catalog of small-scale bridging solutions is compiled for idealized bridging
laws. Large-scale bridging introduces a dimensionless group, a / (60E / r0'), where a is a length
characterizing the component (e.g., hole radius). The group plays a major role in all phenomena
associated with bridging, and provides a focus of discussion in this article. For example, it
quantifies the bridging scale when a is the unbridged crack length, and notch-sensitivity when a
is hole radius. The difference and the connection between Irwin's fracture mechanics and crack
bridging concepts are discussed. It is demonstrated that fracture toughness and resistance curve are
meaningful only when small-scale bridging conditions prevail, and therefore of limited use in
design with composites. Many other mechanical properties of composites, such as strength and
notch-sensitivity, can be simulated by invoking large-scale bridging concepts.

1. BACKGROUND mechanics are reviewed, motivating the models for
toughness, and demonstrating the limitations of small-scale

Building upon the analyses of Dugdale (1960) and Bilby et bridging. The section is concluded with comments on
at. (1963), Cottrell (1963) put forward the concept of crack- current practice of fracture testing, and needs for large-scale

bridging as a unifying theory for fracture at various length bridging concepts.
scales, from atomic cleavage to void growth. Much has 1 Atomic bond vs iber bridging
happened in the last thirty years in developing this idea for all
kinds of materials--metals, ceramics, polymers, cementitious A s will fall apart unless something holds it together. For
materials, and their composites in various forms. In this example, an ionic crystal adheres by electrostatic force
article, we try to place the relevant aspects into the between unlike ions. A unifying idea, sufficiently rigorous
perspective of design with-and q4--ceramic matrix for our purpose, is to represent atomic bond by a relation
composites. In particular, we will emphasize the concept of between attractive stress. o, and separation. 8, of two
large-scale bridging, and its implications for strength, notch- lattice planes. Such a relation is sketched in Fig. 1. and is
sensitivity, and splitting resistance. formally written as

This section sets the stage for our remarks on crack a/cro=Z((5 I/ ). (1)
bridging concepts. In particular, we briefly discuss bridging The dimensionless function Z describes the shape of the
laws, the microscopic properties to be transmitted to relation; the scale is set by strength, oo, and limiting-
continuum models. The fundamentals of Irwin's fracture separation, 6o. For an inorganic solid, the strength is about

"Micromechanical modelling of quaui-brittle materials behavior' edited by Vitor C U. ASME Book No AMRI 18 $60 (members $30)
Appl Mech Rev vol 45, no 8, August 1992 355 0 1992 American Society of Mechanical Engineers



one tenth of its Young's modulus, and the limiting-separation composites under static loading, and metal mramx composites
is on the order of lattice spacing (see Table 1). under cyclic loading usually allows matrix cracking to relieve

stress concentration, but requires fibers to remain intact, so

that (2) provides a conservative limit in design.

S--- - - - - -'

I p

FIG. I A stress-separation relation that represents both atomic
bond and fiber bridging. The strength and limiting-separation
are very different for the two mechanisms- see Table 1.

TABLE I Ulustratve properrues for bridging mechanisms
FIG. 2 Fiber pull-out.

atomic fiber fiber
bond puLl-out cross-over Fibers can even bridge transverse cracks if they are not

a. (N/ n2) 1010 1o1 ItP perfectly aligned (Fig. 3). High fracture resistance due to
cross-over fibers has been demonstrated for a glass matrix6 ira) 10tit 10"s 1) composite (Spearing and Evans 1992). The stress-separation

101 101 rclation has not been modeled in any detail, but the flexible
1 () 10-1 1 fibers are expected to provide small closure-strength and

large limiting-separation. Values listed in Table I are
inferred from the experimental data of a CAS/SiC composite.

As pointed out by Needleman (1990), relation (1) Ductile, crack-bridging particles can substantially
introduces a stress level ao and a length scale 60, and toughen a ceramic (e.g., Bannister et at. 1992). The closure-
provides an intrinsic failure criterion, based on which strength is a few times the yield stress of the ductile alloy,
macroscopic phenomena can be simulated. Table 1 lists the and the limit separation scales with the product of the size
values of a080 and 50E / ro (Young's modulus is taken to and the ultimate strain of the particles. They are also
be E - OiN in2 ). As we shall see later, they represent, influenced by debonding of the particle/matrix interface
wit' pre-factors of order unity, fracture energy and fracture (Mataga 1990, Bat and Hui 1990).
process zone length, respectively, when the process zone is All bridging mechanisms can be represented by stress-
mucn smaller than flaw size. The significance of the length, separation relations, but there is a significant difference: the
60E / c 0 , was first appreciated by Cottrell (1963), and will scales of ao" and 30. It is the large variation in the bridging
be further elaborated upon in this article in connection with scales, from a nanometer to a meter, that accounts for the
composite design. richness in material behaviors. In particular, as indicated in

Things other than atomic bonds can also hold a material Table 1, the fracture energy and damage extent differ
together. Illustrated in Fig. 2 are strong fibers bridging a substantially for atomic bond and fiber bridging.
ceramic matrix, mimicking atomic bonds holding a solid. By Given a stress-separation relation that tells how a solid is
analyzing a fiber-matrix cylinder, one finds an approximate held together, one can analyze any components to determine
stress-separation relation (Marshall et al. 1985; also the load-carrying capacity, which is the approach to be
Hutchinson and Jensen 1990 for a correction): reviewed in this article. However, this was not how Irwin

established the Linear Elastic Fracture Mechanics. In fact,
h c/loosurs /rn)g2. (2) LEFM makes no reference to microscopic details of fracture

The co g process. To place bridging concepts into perspective, it is
(3) interesting, then, to first reflect upon the facts underlying the

where Sb. is the fiber bundle strength, and f the fiber volume fracture mechanics that is independent of the fracture
fraction. The limiting-separation is mechanisms. The classical view outlined below can be

so = (I - f)ZS• R, (4) found in the textbook by Kanninen and Popelar (1985).

2ET cross-over fibers
where R is the fiber radius, T the sliding friction of AJ r Fiberdirection

fiber/matrix interface, and E the Young's modulus, assuming 1
that elastic constants are identical for fiber and matrix. In
practice, 40 can be varied substantially by varying t

Note that (2) is valid before fiber breaking. Fiber pull-
out after breaking has also been modeled; see Hutchinson and
jensen (1990) for review. Yet design with ceramic matrix FIG. 3 Fiber cross-over.



1.2 Linear elastic fracture mechanics quantitatively relevant to design. Two handbooks are thus
sufficient: one contains stress intensity factors of %anout

Ironically, it is the very irrelevance to microscopic details geometries, computed from elasticity problems: and the
that gave rise to the great success of fracture mechanics in the other contains toughness values for various ,rvateriai

early days. LEFM is versatile: it applies, with some measured from laborator) samples.
justifications, to any solids-metals, ceramics, polymers and No microscopic details are menuoned.
composites. LEFM is precise: it relies on macroscopic Another useful concept is energy release rate t, the
measurements of toughness and elasticity solutions of stress decrease of elasuc strain energy of the body, for a unit area of
intensity factors. LEFM is far-reaching: the concepts have crack growth, when the deflection at the external loading
been extended to ductile fracture, fatigue cracking, dynamic point is held fixed. Irwin (1957i sho.ed that 6- and K arc
fracture, and interface debonding. related by

Irwin's LEFM erects upon a single premise: At the onset G= K" / F*, (8
of fracture, the material is elastic over the whole component, where E' = E for plane stress, and E' = E/I I - v&i for
except for a damage zone localized around the crack tip, plane strain. E and v being the Young's modulus and
whose size L0 is much smaller than crack size a: Poisson's ratio. Fracture energy r is related to K, by a

L0.o a. (5) similar relation
The condition is satisfied by either a large crack, or a brittle r = K'l E'. (9)
solid suffering little diffused damage upon fracture. This
statement will be made more precise later In summary, K and G are equivalent &'uding

Then follows the central corollary: However complex a parameters; Kc and F are equivalent material properties,
fracture process is, a single material property (called All these are valid concepts when small-scale damage
toughness) quantqies the resistance to fracture. That is, for condition (5) prevails.
a given material, toughness measured from a laboratory
sample can be. used to design components.

No microscopic details are mentioned.
The elastic field in a component is analyzed as if the

crack tip--or the tiny inelastic zone-were a mathematical
point with no physical structure, an idea analogous to the
boundary layer approach in fluid mechanics. Such stress
field is square root singular: = 2 sngulany

an- K(2n-F"2 F,,(O), (6) a - K(2,)"2

where r and 0 form polar coordinates centered at the crack
tip, F,(0) are functions listed in elasticity textbooks, and K
is stress intensity factor. The external boundary conditions
of the component do not change the structure of the singular ,
field-the square root and functions F (0), but do change damage: K-aminulus I component

Zone. bounidary
the magnitude of K.

The physical significance of K can be appreciated from FIG. 4 Elastic solution and actual stress distribution.
Fig. 4. The actual stress distribution is modified in two ways
from the elastic solution (6). Within the damage zone, the
inelastic deformation redistributes stress, bounding the stress Powerful as it is, LEFM uncovers little of what happens
by the closure-strength, a.. Close to the component within the damage zone. There is a number of
boundary, the stress merges to the boundary conditions. disavntae of this b ox roach. mFor on
Despite the modifications, provided condition (5) is satisfied, disadvantages of this black-box approach. For one,

the stress field within the annulus, - < r < a, is well toughness can be enhanced by controlling microstructure: it
is of great significance to have a theory for toughness, so thatapproximated by elastic solution (6). the controllable quantities can be optimized. This theme has

Consequently, K is the only parameter through which been vigorously pursued for the past twenty years,

the applied load can influence the damaging process at the cumnatigoinuan urstad of th nest vars

crack tip. The resistance to fracture can therefore be defined culminating in an understanding of toughness--to various

as the maximum stress intensity factor that a material can degrees of sophistication-for almost all engineering
sustain. That is, for a given cracked specimen made of a materials. For example, the microstructural basis of
certain material, denoting K as the stress intensity factor of toughness has been reviewed by Evans (1990) for ceramics,
the geometry and loading, and K, the toughness of the by Ritchie and Thompson (1985) for ductile alloys, and by Li
material, the crack will not grow if (1990) for cementitious materials.

K < K . (7) Here we focus on toughness mechanisms that can be
In contrast to other measures of toughness such as described by stress-separation relations. The standard small-

impact energy, K, is both macroscopically measurable and scale bridging model is as follows (Fig. 5). If condition (5) is



satisfied, the crack can be taken to be semi-infinite compared
to the damage zone size L, and the external boundary r
conditions condensed to stress intensity factor K, or energy
release rate t, by handbook solutions. The bridging law (1)
is applied in the damage zone, coupled with the elastic solid.

A fiber-reinforced ceramic is characterized in a
mechanical test by a resistance curve (R-curve). such as that 2
in Fig. 6 A pre-cut is made prior to a fracture test and, upon L

loading, j dnving force, 10, about 'h matrix fracture energy, crack extension L
starts matrix crack. As the crak, .ngth L increases and Fig 6 An R-curve under small-scale bndging condiuoni
more fibers bridge the crack, higher driving force is needed
to maintain the growth. The separation at the pre-cut root Given a0 and 3o. (10) and (11) provide estimates for
finally reaches the limiting-separation. 3, = 80, after which, fracture energy and bridging zone size. For example, using
the damage strip is in a steady-state, translating in the body, (3) and (4) for a fiber-reinforced ceramic, one finds that the
cracking the matrix in the front, and breaking the fibers in the fracture energy scales with
wake. Quantities of significance on an R-curve are the
plateau fracture energy. r, and the crack extension to attain r - f(l - f) SbR (12)
the plateau. L., which is the length referred to in (5). 2ET

Neglecting r. and assuming a rectilinear bridging law and the steady-state bridging zone size scales with

(the rectangle in Fig. :), Bilby et al. (1963) showed that the ir (I - f)2SbR 03)
plateau fracture energy is 16 fr

r = 0o8o, (10) Relations of this sort are easy to obtain for other bndging
and the steady-state damage zone size is mechanisms, and can serve as a guide for microstructure

IT
LO= r E' 80 / c0 . (11) design. For example, it is clear from (12) that a composite

8 gains high fracture energy from a largc fiber strength and
Observe that L. scales with the material length 80E'/a 0 . radius, but a small sliding friction.
As will be shown later, a different bridging law shape Z only Yet these same quantities also cause a long damage
modifies the pre-factors in (10) and (11) within order unity, zone. The small-scale damage condition (5) can be
The estimates based on these formulas are listed in Table I, combined with (11) to give
and discussed below. a/ (3oEVlcro) * 1. (14)

Atomic bonds break at a small limiting-separation, The above dimensionless group will appear many times in
amounting to both a small fracture energy and a small this article, and provide a focus for discussions. In this
damage zone. In practice, condition (5) is always justified, context, it measures the unbridged crack length, a, in units
so that LEFM is valid for inherently brittle solids containing of material length, 80E'/ao. Condition (14) is rarely
cracks longer than a few nanometers. satisfied in practice for a component made of a composite, so

In contrast, large limiting-separations in fiber bridging toughness is of limited use in design.
lead to both large fracture energies and large damage zones.
As indicated in Table 1, the bridging zone size for fiber 1.4 Large-scale bridging
pull-ru, -iay violate condition (5), depending on specimen
size. -bridging zone size for fiber cross-over will In the recent literature, there is a tendency to report
certaim., violate (5) for most applications. "effective" R-curves, converted from either numerical

simulation or experimental reco,7, -Xs demonstrated by Zok
Kand Horn (1990), under large-scale bridging conditions, the

R-curves so constructed depend sensitively on specimen
geometry and size: they are ineffective and misleading. The
practice must be stopped.

Retrospectively, this tendency stems from the success of
ýUp the concepts related to stress intensity factor in design with
4 up metals and ceramics. However. as we will see later in this

t•P article, since large-scale bridging is prevalent in composites,
many significant concepts in design with, and of, composites,
such as strength and notch-brittleness, cannot be deduced
from fracture toughness. An all-embracing statement, when
large-scale bridging conditions prevail, is that Irwin's one-
parameter framework, the classical LEFM, is invalid. To

FIG. 5 Small-scale bridging model: the damage is embedded determine load-carrying capacity, a stress analysis is required
in a K r,, -1. decoupled from the actual component geometry. for coupled specimen and bridging law. Consequences of



this statement will be reviewed in Section 3. zone size. When ro / cogo o 1, which is typically the case

for fiber-reinforced ceramics, (18) and (20) recover (l0) and
(11), respectively.

2. SMALL-SCALE BRIDGING SOLUTIONS

Small- and large-scale bridging solutions arc discussed in
detail in this and next section, respectively. The two topics
can be read independently, in any order.

2.1 General problem

Now the small-scale bridging model (Fig. 5) is Laken up to FIG. 7 Bridging laws with hardening and sofwrung.

compute R-curves (Fig. 6). Stress analysis is unnecessary to
compute the plateau fracture energy, F. An application of 2-3 Hardening and softening
Rice's J-integral shows that

G =Gt, + o'0,00 Z(I)dc, (15) Consider the stress-separation relation sketched in Fig. 7,

This equation gives plateau fracture energy F when having an analytic form

, /60 = I and C,, = 0. co" 8<450 (21)

A stress analysis is necessary to compute the full R- 0, 6 >,50

curve. On dimensional grounds, the separation at the root of where s is the slope: s > 0 for hardening, and s < 0 for
the pre-cut takes the form softening. The shapes are versatile enough to fit many

3, (La, K bridging mechanisms, and yet the solutions are simple

T f-_ = -_•- o (16) enough to be tabulated completely. Equation (15) is0 ( 5Vu0..7, ) specialized to
and the stress intensity factor at the crack tip

___I 2KU _ o(KLa (17) Gj = Fo + aYob, +-2 s.5,. (22)

a.-L4 0  K5,E" (1-• The driving force attains the plateau F when 3,/ 5=01.

Functions f and g will also depend on bridging law shape
X, but nothing else. Integral equations are efficient to solve TABLE 2 Hardening Bridging

this class of problems (e.g., Budiansky et al. 1988). Observe C2 Ci
that K and G, and KP and Gp are both related by Irwin's

relation (8), so that only two among (15), (16) and (17) are 0.25 1.244 1.670

independent. 0.5 1.478 1.737
1 1.91 1.836

After f and g are computed, the rising nart of the R- 2 2.68 1.984
curve is given by (17) by letting K, = K0. and the steady- 5 4.44 2.184

state bridging zone size L, is solved from (16) by letting 10 6.54 2.307stte15 8.15 2.356

45,/ 6= 1 and K=K = (FE')112. Explicit solutions are 20 9.51 2.386
25 10.70 2.404

collected in the following sections to assist practitioners in 30 11.76 2.414
the field.

2.2 Rectilinear bridging law Once a. is treated as a residual stress, the problem
becomes purely linear (e.g., Suo et al. 1992a). Linearity and

First consider the rectilinear bridging law (the rectangle in dimensionality dictate that
Fig. 1). Specialized from (15), the plateau fracture energy is K = c, ao&01- + C2KO, (23)

r=F o+a0 450 . (18) andthat

The stress analysis gives (Tada et al. 1985) B5, = C3aoL / E'+c4Koi-L / E'. (24)

K = (8 / tr)"2/o-o'L" + Ko. (19) The pre-factors, c,, depend only on dimensionless parameter

This equation defines the rising part of the R-curve. The fi =sL / E'. (25)

bridging zone size, Lo, is obtained by substituting (18) into Substituting (23) and (24) into (22) gives a quadratic in K0

(19), giving and ao being identically zero. This in turn implies that the

Fr, 1/2 ,112-2 coefficient of each term in the quadratic vanishes, leading toEL0 +0 (~ 0  pC2)1/2
Lo=.!LE'-`° 1+- F° _FI J . (20) c2 =(1+2 ") ', c3 =(c 2 -I)//3, c4 =2c,. (26)

8 ao.[ aooo co.. o That is, all cs are determined if any one of them is.

For the same bridging mechanism, i.e., oa and ,5 being held The hardening spring with ao = 0 has been solved by

constant, the tougher the matrix, the smaller the bridging Budiansky et al. (1988). In present notation, their paper



gives c2 reproduced in Table 2. Also listed arc values of c1  5,/ 3 = A.I/-mXt(,--::-')K / cr0 -FL, m), (30)
inferred according to (26). and

For many bridging mechanisms, stress rises sharply with
a small separation and then decays with a long tail, well fitted Kgfp / cro = • "-k -• • K , m). (31)
by the linear softening triangle in Fig. 7. Bao and Hui (1990) where
solved the problem when K0 = 0, and their results are listed in = L / (3E'/') c32
Table 3. The solution is now interpreted for the general case A scaling relation noted by McMeeking and Evans (1990)
with K0 * 0, with c., C3 and c, obtained from (26). and Cox (1992) is used to obtain the above functional forms.

When Foi 0o4 - 1, the plateau fracture energy is Dimensionless funcuons A and k dcpend on two variables as

F = crtu,6, (27) indicated; they will be tabulated elsewhere (Gu et al. 1992),

and the damage zone size upon fracture is
1,= 0.366E'5 0 o/r (28) 3. CONSEQUENCES OF LARGE-SCALE BRIDGING

These can be compared to (10) and (11) for rectilinear
bridging. When large-scale bridging prevails, K , F and R-curve are

irrelevant concepts, and load-carrying capacity must be
TABLE 3 Softening bndging computed by analyzing the component geometry coupled

with the bridging law. A large-scale bridging model consists
- 4lI• 2K:/E~oo c1  of two elements: derive the bridging law for a candidate

0.05 0.192 1.564 material from either micromechanics models or mechanical
0.1 0.366 1.526 tests; and compute the load-carrying capacity by analyzing a

0.15 0.5.. 1,487 projected component coupled with the bridging law.0.2 0.b57 1 446

0.25 0.771 1.401 Attention here is focused on the latter in a special context:
0.3 0.864 1.354 how various mechanical properties, such as strength, notch-

0.35 0.933 1.303 ductility and splitting-resistance, can be deduced from0.4 0,978 1.248

0.45 0.998 1.8•9 bridging laws.
0.466 1.000 1.169

3.1 Dimensionless groups

To demonstrate the effect of bridging law shape, R-
curves calculated using rectilinear and softening laws are A dimensionless group appears in all large-scale bridging
contrasted in Fig. 8, both with 170 t/ c 0 3o = 0. The plateau models (see Appendix):

fracture energy r and the strength a. can be measured a = a (33)
macroscopically, so they are used to normalize the R-curves. 60E'lao"
As shown in Fig. 8, given the same r and a., the damage Note that ca is the same in (14), but a should be interpreted
zone sizes differ by approximat..,y a factor of 2. R-curves as a characteristic length of the component. As we shall see,
derived from most other bridging laws are expected to be various size effects stem from this dimensionless group.
bounded between the two curves in Fig. 8. Design charts can be organized in a nondimensional

form. Figure 9 illustrates a panel containing a notch of size
2.4 Power-law bridging a loaded by stress 6. The load-carrying capacity is written

ET,, / ao = F(a, ro / Ca60 ). (34)
Power-law Parameter F0 / a080 measures the relative amount of energy

a / o=( /,50) (29) dissipation at the crack tip (e.g., matrix toughness). Also

embodies fiber pull-out as a special case (m -- 1/2), and enterng (34) are ratios of a to other lengths specifying the
linear and rectilinear relations as limiting cases (m = I and component geometry, such as notch root radius and panel
m= 0, respectively). The general solution Lakes the form width. A different bridging law shape Z only modifies thedesign curves within order unity, which usually does not

qir affect qualitative conclusions (e.g., notch-brittle or -ductile).
Segregation of the shape from the scale of a bridging

law is of practical significance. Once charts are constructed
for 1rized bridging laws with important design features

(e.g., holes), components with actual bridging laws can be
designed, with the charts, by fitting to one of the idealizedL I(E'rar) laws. This approach is equally valuable in design of

V I composites. In this phase, the detailed bridging law shape
0.393 0.732 may be unknown, but the scale of the bridging, cr, and .60,

FIG. 8 R-curves due io rectilinear and softening bridging, can be related to microstructural variables. Whether a



material is viable for a particular application can be assessed, the ratios of a over lengths specifying the geometrs, but
before the material is made, bN consulting the charts. nothing else (see Appendix). Many solutions of this type

The general mechanics problem is stated as follows (Fig. have been given by the group at Rockwell International
9). In a body of characteristic length a loaded by stress j, a (Marshall et al. 1987, Cox and Lk) 1992, and Cox 19921.
matrix crack trajectory of length L is identified. In obtaning (39) and (4 0), /la.. i,, assumed to
experimentally or hypothetically, emanating from a stress monotonically increase with L a. so that the maximurn load
concentrator, bridged according to stress-separation relauon E,, / a0 happens at 3, = 6. This in general is incorrect
(1). The separation at the end of the crack takes the form when q, t 0 (Marshall et al. 1987). or the bridging softens

J,/3,=f(a/c,, a, L/a), (35) (Carpinten 1990, BaoandZok 1992). lfthis.seCMs to be the
and the energy release rate at the tip case, a formal procedure is as follows. After f and g arc

Gup / o'f30 = g(a / c'0 , a. L a). (36) computed, ET,. is searched aw a function of damage zxtent

Functions f and g will also depend on bridging law shape Lia, subjected to GLp = F0 in (35), and , _S 6, in t36).

x, and ratios of a to other lengths characterizing the Consequences of large-scale bridging are discussed in
component geometry. The coupled problem, either linear or the following sections. To focus on issues of qualitative
nonlinear depending on Z, can be solved by both integral significance, the bridging law is assumed to be rectilinear,
equation and finite element methods. An integral equation and the crack tip energy dissipation is negligible.
using dislocation kernels is derived in Appendix, from which 1-0 /ar5 0. unless otherwise stated.
(35) and (36) can be inferred.

3.2 Strength: monolithic solids vs composites

A comparison of the strength of a monolithic ceramic and the

strength of a composite is particularly illuminating. Similar
comparison has been made by Cottrell (1963) in connection
with notch-brittleness.

aThe strength of a monolithic ceramic measured by a
mechanical test, S, is known to be only about a hundredth of

- 'up the atomic bond strength, or.. Griffith (1921) put forth an
explanation on a basis of two postulates: 1) atomic debond is

L the only inelastic process during fracture and, 2) the solid
contains traction-free, crack-like flaws comparable to the size
of microstructure (e.g., grain diameter). The small-scale
damage condition is satisfied: the microstructure is typicaliy
on the order of microns, and the atomic debond process is
confined within a few nanometers. Crack tips are therefore

FIG. 9 Large-scale bridging model: the bridging zone is idealized to be mathematical points in calculating elastic field
coupled with component geometry. in the solid. In particular, the energy release rate for a plane

strain crack of size 2a is (Tada et al. 1985)
For rectilinear bridging, iinearity dictates that G = ,rad2 / E'. (43)

anhEla = fla- f2co, (37) Atomic debond absorbs energy r = cro~o, as given by (10).
and that The applied stress 8F reaches strength S when q = F, so that

K / =f3-f O,(38) -1/2

where fs depend on damage extent La, and ratios of a S . ( a (

over lengths specifying the geometry, but not on a. In 470 =ý _/ 6, Oo~a(
particular, when Ko = 0, the above lead to This curve is indicated by SSB in Fig. 10. Griffith's small-

TOx/o = f 4 /f 3 , (39) scale bridging model explained the small values of S / er,
and when a/(6 0 E'/lo) ,, 1. However, as clearly indicated in

a __ __

S(f.f/f) (40) Fig. 10, the model fails when a/(b '/cro) - 1. for the

This pair gives the function (34), damage extent Lia being strength of a solid should never exceed the atomic bond

regarded as a parameter. Solution for linear softening is still strength.

of form (37) and (38), butts in addition depend on a- For a fiber-reinforced ceramic, the dominant inelastic

For power-law bridging (29), the solution takes the form process is frictional sliding of fiber/matrix interface. Using
/6 / a L/a) (41) the illustrative properties in Table 1, assuming that the

/, 4 unbridged flaw size, a, is of a few fiber diameters, one finds

and Kthat a/(60E'/cao)<I. Consequently, the bridging zone
KP/o'fh ain/(I-"k~a•-I•i-')a/ao, L/a). (42) length is comparable to the flaw size, so that the damage

The dimensionless functions A and k also depend on m, and zone and the flaw must be analyzed as coupled. The



pertinent results are (Tada et at. 1985) To demonstrate the effect of bndging law shape, Fig. II

3,E' 7 2 2 .. , 1 plots strength computed from rectilinear and softening
-e =4(- l)i--• -+81 nr/,T (45) bridging laws (Bao and Zok 1992). The difference is

appreciable, but of order unity. When a proper selection of

1K0  1/2[ 2 C a)r and , is made, bridging laws of other shapes would give

77 - - .cos-(l / 7) (46) rise to strength bounded between the two curves in Fig. 11.
o0Ora 00 I

where 77 = I + Lia. 3.3 Notch-sensitivity
The strength 6 = S is obtained by setting 5 = So and

Kup = 0: Holes are often drilied in a panel for fastening or cooling.

8 a Neither toughnessý nor strength can be directly used to
8n. seal S 1. (47) determine the maximum static load. However, a designer

r o'/0 ) ý .2a0 )] knows to ignore a small hole in a ductile metal panel, but not

This equation is indicated by LSB in Fig. 10. A comparison a hole in a ceramic. What about a fiber-reinforced ceramic?
of the two curves gives a quantitative feel for the regime To fix the idea, Fig. 12 illustrates a panel with a hole, and the
where the small-scale bridging assumption is valid. Indeed, question is how much load the panel can carry.
the LSB model predicts that S/aro approaches unity when
the unbridged flaw size a is small, as anticipated. Since 4
typically a / (6 0Er lat) - I for a composite, the strength of a
composite is insensitive to processing defects, as compared to
the strength of a monolithic ceramic.

2a L

o SSB L

2w
1 2a

LSB 1

FIG. 12 A panel containing a hole.
I _._

1 a /(eIoEao) The answer depends on materials. For a monolithic
ceramic panel, the load should be such that the stress at the

Fig. 10 Strength predictd by small- and large-scale .ridgi8. hole is below the "strength" of the ceramic. Let cc be a
The former is conre~ct only when a is large, reference value of strength (ignoring statistical distribution),

and C be the stress concentration factor at the hole. The
S •maximum load that can be carried by the panel is given by

a /_ C__Oo = 1 / C. (48)
I The stress concentration factor depends on a/w (Peterson

1971); Equation (48) is plotted in Fig. 13. Notice that even a
o. , ,small hole (a/w = 0) reduces the load-carrying capacity by a

factor of 3: ceramics are notch-sensitive.
0.6 - , The design criterion is different for a ductile metal panel

0, under static load- Plasticity relieves stress concentration near
0.4 o0. the hole, so that the maximum load should be such that the

net section fully yields:
0.2 __ ro,/a = I - a / w, (49)

where a. is the yield strength of the metal. Equation (49) is
00 0.2 0.4 0'6 0.8 1 1'2 a 1'4 plotted in Fig. 13. A small hole does not reduce much load-

/ carrying capacity: ductile metals are notch-insensitive.
What about a panel made of a fiber-reinforced ceramic?

The answer depends on material and hole size. Matrix

Fig. 11 Strength of a material computed from rectilinear and cracking near the hole, allowing fibers to slide, provides a
softening bridging laws. mechanism for ductility 30 and stress redistribution. The



composite behaves according to the dimensionless group for a hole m a large panel (a,'w = 0). Specifically. the hole

a [•, notch-ductile becomes notch-brittle when a/(6/aE'!co) > 10. For

-5Ei/a0o I, notch- brittle (50) example, for a composite with ,E'lc(, - 1 mm. a hole of a
That is, notch-sensitivity is a property of both material and centimeter radius will be notch-bitde. The mechanics model
notch size: for a given composite, a large hole tends to be to construct Fig. 14 is similar to that in Section 3.2, except
ceramic-like, but a small hole metal-like. In pracuce, 60 can that finite elements are used to computefs in (37) and (38).
be changed. by orders of magnitude, by varying the sliding Also included in Fig. 14 is the maximum load for a panel
friction. Such experiments would verify the model, containing a crack-like notch (Eq. 47). The two are expected

Classification (50) emerges directly from the to bound the curves for notches of various root radii.
dimensional analysis of the large-scale bridging model (see Computations on the effects of notch radius and ela.stic

Appendix). Another dimensionless group, a/(rE'/oo), has orthotropy are in progress (Gu et at. 1992).
Notch-ductility can be enhanced by various damage

long been used to correlate transition behaviors for metals modes, notably, multiple cracking and matrix splitting along
(see Kanninen and Popelar 1985). The two groups are the fiber direction. To illustrate, consider a hole with splits
equivalent since F - 350a 0 . Large-scale bridging concepts (Fig. 15). The extent of the splits, hia, is determined by the
provide a framework to simulate notch brittle-to-ductile shear resistance r., resulting from either friction in
transition behaviors for composites. As we shall see, some unidirectional composites, or bending of 90 degree fibers in
behaviors have close analogues in metals, others do not. woven composites. The anticipated results are sketched in

Fig. 16. When i / cro - 0, the splits are long and the matrix
crack becomes an edge crack, so that the full load-carrying

notch-ductile capacity can be reached. When i" / Co ~ 00, the splits are
00 a0 , 0 / _E = 0 small, so that the curve in Fig. 14 is reached. Detailed results

will be reported elsewhere (He and Suo 1992).

notch-bnttle

1/3

FIG. 13 The maximum load for a panel containing a hole.

I ___

(Y0 0.8

FIG. 15 A stress concentrator (the hole) relaxed by splits.

0.6
circular hole

0.4 r1 //o 0=0
rack-like notch

0.2

0 2 4 6 8 10 a 12

8,E / o 0  -----------------------------------------

Fig, 14 Notch ductile-to-brittle transition (Ho and Suo 1992).

The maximum loads for intermediate values of
(aro)/(65oE) fall in between the two limiting curves in Fig. a 10

13, which can be computed by invoking large-scale bridging bEa

concepts. Figure 14 plots the results of such a computation FIG. 16 Notch-ductility due to splitting.



3.4 Transverse cracks: Splitting vs tunneling realized in heams with practical size.
The J-integral over the external boundary of the beam

Two types of transverse cracks. splitting and tunneling, are can be interpreted as the driving force for splitting. Figure 19
illustrated in Figs. 17 and 18. They take the same fracture plots J as a function of matrix crack extension. L. where
path in the matrix, along the fiber direction, with fibers (53) is the rising parL and (52) the plateau. In contrast to the
crossing over the crack plane. For splitting, the cross-over R-curves under small-scale bridging conditions, the J-1
fibers supply substantial fracture resistance in addition to curves depend on beam thickness. The latter are therclore
matrix fracture energy (Spearing and Evans 1992). In not material properues.
contrast, the cross-over fibers provide little resistance to
tunneling cracks (Beyerle et al. 1992). As we shall show,
this is a large-scale bridging effect.

To understand the difference, first consider a splitting
beam of thickness 2h. bridged over length L, and loaded by
moment M (Fig. 17). Typically L is comparable to 2h, but
smaller than the total crack length. The problem has been
analyzed by Suo et al (1992a); the results pertinent to the
present discussion are outlined below.

cross-over fibers
Fiber directon

L

FIG. 17 A splitting beam interacting with cross-over fibers. FIG. 18 A crack nneing in a 9 0 -ply.

An application of the J-integral shows that
12M 2 /E'h' = a0"0, + To, (51)

where the left-hand side is the integral computed over the ' -o' 0  r0 o
external boundary of the beam, and the right-hand side over ,Q
the bridging zone. The crack tip energy dissipation, r0 , is "Z
also included for the sake of discussion. The maximum
moment is reached when 6, = 30: Z h increases

12M2 /E'h 3 = a0"8o + ro. (52) r
Using the illustrative numbers in Table I and the typical
value for a glass matrix, r0 - 10 Jim2 , one finds that the Crack Extension.L

cross-over fibers substantially increases M.,,,. Since it is FIG. 19 i-integral as a function of crack extension. L. and

small, r0 is to be ignored in the following estimate of the beam thickness. h.

bridging zone size.
The disturbing number in Table I, Lo = I m, is Cross-over fibers do not provide much resistance to

predicted from the small-scale bridging model. It is tunneling cracks (Beyerle et al. 1992). A large crack

incorrect: L of a few beam thickness, about several separation is a prerequisite for using the large limiting-

centimeters, is observed in experiments. The flexibility of a separation 3. (- 100 gin), which cannot be realized in a

beam can substantially reduce the critical bndging zone tunnel constrained by the surrounding material.
length. This is a large-scale bridging effect, as shown below. Consequently, tunneling cracks are only resisted by matrix

Dimensional considerations lead to fracture energy F0 . A mechanics model for tunneling cracks

M Z =(3 is giver by Ho and Suo (1991)

2
where a1 depends only on L/h, and is of order unity when 3.5 A note on measuring bridging law

L/h > I (Suo et al. 1992a). Combination of (52) and (53) Various methods have been considered to determine the
gives the critical bridging zone length when 5, =: bridging law from either experimeits, models, or

Lo=al12(E,6o/3ao)i( 4 h314. (4) combinations (Cox 1991). One such method is described as
For example, with h = 1 cm, one finds L. = 3 cm, follows (Liet al. 1987).
suggesting that the potential fracture resistance can be Write a bridging law as



= ES). (55) strength as the basic material property. Together Aith an

R;:ce (1968) showed tht elastic component, the bridging law pro% ides a length,
•,01ia 0 , varying from a nanometcr to a meter for different

I = ., ' )d3 . 5, bridging mechanisms (Table 1, whAich is respxon.ihc for the

where J is the J-integral computed over a contour OutSide vast differences in failure behavior.. Large-s.alc bnd'ing
the bndging zone, J,, over a contour close to the crack Lip, introduces a dimensionles,' group- a / - , A here a 1"
and 8, the separation at the pre-cut root (Fig. 20). Upon the lergth characterizing a componenti having di-fcrcnt

loading. J,. = 17 is maintained as the matrix crack extends, meanings in various contexts: unbrdUged cTrack si/c for

Differentiating (56) with respect to i3, g'.es toughness. unbndged flaw si/e for strength, and hole radju,,

Ca(5:)= riI/ , (57) for notch-sensitivity. It is demonstrated that the set of

Consequently, the bridging lay, ,an be determined if both J normalization introduced in this article separates the roles

and J, can be determined ais a function of applied load P. played by the shape and the scale ol a bridging lav, wo that a
design chart can be presented in a nondimensional form (74).Since the limiting-separation for various bridging and a different bridging law only modifies the chart within

mechanisms in composites is in the range 10 - 100 nu , order unity. A collection of small-scale bridging solutions is
many experimental techniques may be used to measure st given in Section 2 for several idealized bridging laws.

Difficulty arises to relate S to the applied load P Large-scale bridging effects are illustrated in Section 3 bh

There has been a misconception that J is related to P examples ofpractcal signficance.
through handbook solutions for K. This is wrong since
Irwin's relation (8) is valid only under small-scale bridging Micromechanics Mecharucal

conditions. Under large-scale bridging conditions. J usually Modehng Testing

depends on the bridging law, which is )et to be determined
from the very experiment. A procedure has been proposed
by Li et al. (1987) to determine J experimentally. In Cni
general, the method suggested by (57) will be difficult to use Bndgi.,g Lv. Mechanics
under large-scale bridging conditions.

There are exceptions. For example, the J-integral over
the external boundary of a splitting beam (Fig. 17) is
independent of the bridging law (Rice 1968):

J = 12M' / Ei. (58) [I o I Strenth INoch-Sensii io1

Thus, splitting beam can be used to determine the bridging FIG. 21 The main theme of crack-bridging concepts.
law under large-scale bridging conditions. Specimens having
the same attribute are reviewed by Suo et al. (1992a).
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ABSTRACT

Holes are often drilled in a panel for cooling or fastening. For a panel made of a monolithic

ceramic, such a hole concentrates stress, reducing load-carrying capacity of the panel by a factor qf

3. By contrast, for a ductile alloy panel, plastic flow relieves stress concentration so that the small

hole does not reduce load-carrying capacity. A panel made of ceramic-matrix composite behaves in

the middle: matrix cracks permit unbroken fibers to slide against friction, leading to inelastic

deformation which partially relieves stress concentration. Load-carrying capacity is studied in this

paper as an outcome of the competition between stress concentration due to the notch, and stress

relaxation due to inelastic deformation. The inelastic deformation is assumed to be localized as a

planar band normal to the applied load, extending like a brdged crack. The basic model is large-

scale bridging. A material length, 30E / aro, scales the size of the inelastic band, where a0 is the

unnotched strength, 60 the inelastic stretch at the onset of rupture, and E Young's modulus.

Load-carrying capacity is shown to depend on notch size a, measured in units of b 0E / o0 .

Calculations presented here define the regime of notch ductile-to-brittle transition, where ceramic-

matrix composites with typical notch sizes would lie. Both sharp notches and circular holes are

considered. The shape of the bridging law, as well as matrix toughness, is shown to be

unimportant to load-carrying capacity.

1. INTRODUCTION

Cottrell (1963) was among the first to recognize the full capacity of the work of Dugdale

(1960). Barenblatt (1962) and Bilby et al. (1963), and put forth crack-bridging as a unifying

process at all scales-from atomic debond to metal voiding. Instead of being viewed as a

singularity, fracture, or any localized damage band, is now a gradual stretching of nonlinear

springs. He also drew the analogy with the Peierls model, where a crystalline dislocation is a

nonsingular, solitary solution of a spring-substrate system.

The crack-bridging concept integrates physical mechanisms of damage and macroscopic
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performance of materials in two steps. First, a sufficiently localized damage process is represented

by nonlinear springs-be it electron cloud or metal ligament-with essential physical variables

retained. Second, at a coarse scale, the interaction between the springs and the undamaged elastic

substrate is viewed as a continuum problem. A common thread is that the spring law introduces a

reference stress c0 and a reference length I3o, and that together with Young's modulus E of the

substrate, they form a material length, 30E / c 0 , varying from a few nanometers for atomic

decohesion, to a few centimeters for metal voiding. This material length determines the size of the

inelastic deformation region. Cottrell was able to correlate notch-brittleness by the ratio of this

material length to notch size.

Much has since been developed in vastly different contexts. A few recent examples are

cited here. Metal-ceramic debonding is studied by Needleman (1990) on a basis of phenomelogical

spring laws mimicking atomic decohesion, and inelastic substrates representing background

dislocation motion. Using springs with atomic periodicity, Rice (1992) reconsidered dislocation

emission from a crack tip; instead of a full dislocation and a sharp crack (two singularities!), a

dislocation now emerges incrementally from a crack tip, in a way analogous to Barenblatt's

cleavage process. On a coarser scale, Huang and Hutchinson (1989) modeled shear localization by

using springs representing void interaction. Suo (1991) examined domain band propagation in

ferroelectric crystals under combined electric field and stress. Compressive kink band emanating

from a hole is studied by Soutis et a/. (1991) with springs representing fiber buckling. Using an

earlier model of Aveston et al. (1971), Marshall et al. (1985) derived a bridging law representing

frictional sliding, which set the basis for much of the subsequent work on composites.

Rice (1976) suggested two approaches to localization. In one approach, localization is due

to loss of uniqueness, the entire band setting in simultaneously from a homogeneous field. In the

second approach, a localization band nucleates at a material defect or a stress concentrator,

spreading like a bridged crack. They are not equivalent, physically or mathematically. The second

approach has the advantage that a physical length scale is introduced through bridging law, which

3
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links material performance with processing variables, such as fiber strength and fiber/matrix

interface friction. The first approach seems to be irrelevant to ceramic-matrix composites, where

the band consisting of the matrix crack and sliding fibers nucleates from a processing flaw.

This paper is out of a more practical concern. We have been trying to reconcile design

practices for ductile alloys and monolithic ceramics, and thereby provide a theoretical link between

design with and design of ceramic-matrix composites. A representative design problem, notch

sensitivity, is as follows. Holes are often drilled in a panel for fastening or cooling. In

determining maximum load, a designer knows to ignore a small hole in a ductile metal panel, but

not in a monolithic ceramic. What about a fiber-reinforced ceramic?

To focus the idea, Fig. I illustrates a panel with a hole, and the question is how much load

the panel can carry. For a monolithic ceramic panel, the load should be such that the stress near the

hole is below the strength of the ceramic. The latter is the Griffith stress associated with a crack-

like flaw in the vicinity of the hole surface, of size close to grain diameter. Because of stress

concentration, even a tiny hole reduces the load-carrying capacity by a factor of 3: ceramics are

notch-sensitive. By contrast, a ductile alloy panel is designed with much tolerance. Plasticity

relieves stress concentration, so that the maximum load should be such that the net-section fully

yields. A small hole does not reduce the load-carrying capacity much: ductile alloys are notch-

insensitive.

What about a fiber-reinforced ceramic? Without a hole, a composite sustains stress up to

the fiber strength times the fiber volume fraction. The presence of a hole knocks down load-

carrying capacity, but not necessarily by a factor of 3. Matrix cracks, allowing unbroken fibers to

slide, partially relieve stress concentration. Elastic stress concentrates over a region that scales with

the hole radius, a. On the other hand, sliding fibers provide extra deformation to redistribute

stress over a region that scales with 6CE / a"0 . Here 450 is the extra displacement due to frictional

sliding at the onset of fiber breaking, a0 the fiber strength times the fiber volume fraction, and E

Young's modulus of the composite. Consequently, the ultimate load, Cmax, is determined by the
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competition between elastic concentration and inelastic relaxation:
a f 0, notch - ductile, cmao/ =0  1

0E / "0 lo-, notch - brittle, C,,ax / aro = 1/3 (1)

Both material and notch size are important: for a given composite, a large hole reduces load-

carrying capacity by a factor close to 3, but a small hole does not reduce it as much. Large or

small, hole radius a is measured in units of material length 6 0E / o0 .

This concept places design practices into perspective. Take a = I - 10 mm in usual

engineering practice and take, for ceramic-matrix composites, 60Ec aro = 0.1 - 10 mm. As our

calculation will show, these put a notched composite into the ductile-to-brittle transition regime.

Criterion (1) also prompts the notion of designing materials for a given application. For ceramic-

matrix composites, the limiting-separation 35 can be varied, by orders of magnitude, by varying

fiber radius, fiber strength and fiber-matrix interface friction. Thus, a composite may be

engineered to make a hole ductile for a required hole size.

In a broader context, 60E / a0 serves as a figure of merit of ductility. The ultimate strain of

an unnotched bar in tension is not a good measure of ductility; it depends on gauge length and the

number of deformation bands. Cross-section reduction is a valid measure of ductility for metals,

but is not transferable to a notched component, nor does it have any counterpart in composites.

The basic ideas outlined above and a few preliminary results have been discussed in a

review article by Bao and Suo (1992). The present paper is to supply mechanics calculations that

define the ductile-to-brittle transition regime, where ceramic-matrix composites-with holes of

useful sizes-would lie. A more general theme pursued here, as well as in the previous article, is

to search for commonality in large-scale bridging models, where Irwin's linear fracture mechanics

breaks down. A dilemma which has become evident over the last few years is this. While crack-

bridging concepts are versatile to explain many phenomena, the mechanics analyses-and

interpretations-are complicated enough to be author-dependent, particularly in the large-scale

bridging regime. At this stage, any simplification or integration would help.
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2. THE MODEL

2.1 Dimensionless Groups

Figure I defines the general mechanics problem: a band of inelastic deformation emanates

from a notch in a component monotonically loaded by CT. The band is localized in that its

thickness is much smaller than any other lengths characterizing the component. The load CT can be

regarded as a function of the stretch at me oand-tai, 3 ta,,; the bWnd lcngth 1. is an internal variable

to be determined by the model. The model will predict the ultimate stress, or load-carrying

capacity, C max, of the notched component. The answer takes the functional form

Umax / a() " F(a, y). (2)

Also entering the right-hand side are the bridging law shape, and the ratios of a to other lengths of

geometry, such as notch root radius and panel width. The rest of this subsection explains these

dimensionless groups.

The inelasticity may be divided into that localized in the band, and that further localized at

the band tip. The inelasticity in the band is modeled as an array of springs with a nonlinear stress-

stretch relation:

a / CO= X(8 / 450 ). (3)

The dimensionless function X describes the shape of the relation; the scale is set by a reference

stress, ao, and a reference stretch, 63. Figure 2 shows several bridging laws to be used in

numerical calculations. The second mechanism is represented by a critical energy release rate at the

tip, F0. For a ceramic-matrix composite with debonded fibers, the inelastic stretch is due to sliding

between fibers and matrix, and 10 = (1- f)m,,,, wheref is fiber volume fraction and r.. matrix

fracture energy. For a void band in a ductile alloy, the band stretches at the expense of enlarging

voids, and T0 dissipates in creating new voids by inclusion/matrix debonding.

The relative magnitude of the two inelastic mechanisms is described by the dimensionless

number

SF0 / aobo. (4)

It enters (2) to determine load-carrying capacity. Two limiting cases are of particular significance.

6
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When y '. o, the energy dissipation in the hand is insignificant compared to that at the tip, so thai

Linear Fracture Mechanics applies. However, for composites and ductile alloys, inelastic

dissipation of the band dominates, say 7< 0.1. This paper focuses on the latter case.

Outside the band, the material is taken to be isotropic and linearly elastic, E being Young's

modulus, v Poisson's ratio, and E' = E for plane stress and E' = EI(I - v2 ) for plane strain.

The coupled substrate-spring defines a material length

6oE/ ao. (5)

This length serves as a figure of merit for the ductility of a bridging ,nechanism. The

dimensionless group

a = a / (50E'/ao) (6)

measures the size of the notch, a, in units of the material length. Observe that a enters (2) as a

size effect.

2.2 Mathematical Description

The basic model is large-scale bridging; see Bao and Suo (1992) for references. An

inelastic band can be viewed as either a bridged crack, or an array of continuously distributed

dislocations. An inelastic band and a traction-free crack behave the same at their tips. The stress a

short distance r ahead of the band-tip is square root singular:

,=Kip(21rr)-"',)-1/2 L--40. (7)

Here Ktip is Irwin's stress intensity factor. The stretch a short distance r behind the band-tip is

parabolic:

S = 8(Kti, / E')(r / 2 yr)1/2, r / L -- 0. (8)

This may be verified by superimposing the result for a pair of concentrated force, on crack faces

that are otherwise free of traction. Irwin's relation connects the stress intensity factor and the

energy release rate at the band-tip:

,2
' = (,9)p/ E'.
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We will use Gtip and Klip interchangeably.

An inelastic band is also equivalent to an array cf continuously distributed dislocatijon.,,

(e.g., Cottrell 1963). The stress in the spring, at position x. is due both to the applied stress C.

and to the dislocation array:
E' ra+L .0d3

aCX (3/ 3)= F(x/a)+"-fa H(x/a, 4 /a) T . (10)

Here F and H are known functions; this integral equation governs the stretch 8(x). which can

be solved numerically (Gu et al. 1992).

Of direct bearing on load-carrying capacity are the tail-stretch 3 t~il, and the band-tip energy

release rate Grip (Fig. 1). Normalizing (10) by

j / Cr, 8 1 (50, x /a, • a,L/ a, ( l

one finds that the answers take the forms

/G=f(Stail / o5,a, L/a) (12)

and

QrP/ 17)6( = g( 6 tail/ .(, aL/ a). (13)

The functions f and g will also depend on the bridging law shape X, and the ratios of a to other

lengths of geometry, but nothing else. Note that Grip may be obtained from 3(x) according to (8)

and (9).

For hardening bridging, at fixed a and Lla, U monotonically increases with 3 til, so that

either one can be prescribed in solving (10). This is not so for softening bridging; C may first

increase with 3tawl, reaching a peak, and then drop. Thus, in general, 8 ,til should be prescribed in

a calculation. Given a notched component, at and yare fixed; upon loading, the applied stress F

is a function of tail-stretch 3 ai1- The band length L, being regarded as an internal variable, is to

be determined from (13) by maintaining Gtip= 10 . Load-carrying capacity 'max / 0O is the

maximum as 3 tail varies within the range allowed by the bridging law. We therefore confirm (2).

2.3 A Simplification

8
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For well-toughened materials, band-tip dissipation is negligible, y = r0 / CrO3 0  1. A

drastic simplification is suggested by steady-state banding. When the band is long compared to

the notch size, Gp becomes independent of Lla and notch shape, being equal to the

complementary energy of the spring law (Budiansky et al. 1986, Rose 1987). For example,

CFO O'o0 0(Ei / C'o)3 (14)
-up 3

for the square-root law Z(e) = , Consequently, if y' = F0 / a'05 0 is small, the band runs across

the entire component at a low load U / o-(). leaving springs intact.

The cross-component band is nonuniformly stretched, 5 ,ani > 3, where 3 is related to j

by the spring law. The dimensional argument similar to that leading to (12) now gives

EU / (To = S(&taip; 50, a). (15)

Obviously, no equation analogous to (13) exists in this case. The maximum c.m,. can thus be

determined as 36ti varies within the range allowed by the bridging law. The rest of the article will

focus on presenting results for the special case y = 0, with occasional excursion to the case of

small y, only to show the insignificance of the latter as far as load-carrying capacity is concerned.

Figure 2 shows bridging laws representative of a wide range of behaviors; their solutions

are summarized in the Appendix. A few general observations are made here. Rectilinear and

linear-softening laws cause a peculiarity; they have no complementary energy, qa, = 0. Thus, the

band length L is finite even if y= 0, and should be determined from (13).

The exponential law

a / Uo=(3 / 8O)exp(1 - 8/ 0) (16)

is taken by Needleman (1990) to represent atomic decohesion. The two reference quantities, Co

and 15. can be inferred in the usual way from measurable cohesive properties-lattice spacing.

Young's modulus and surface energy. This law is used here to illustrate all laws of this type.

First, the law has no limiting-stretch; 80 is assigned, arbitrarily, as the stretch where the stress

reaches the maximum, aoo. Nonetheless. 80 still conveys the idea of interaction range (30 - I A

for atomic debond). Second, due to softening in the springs, for fixed ax in (15), U first

9
Tue. Dec 22, 1992



increases with 3 tail, reaching a maximum, and then drops. Third, uniqueness is not guaranteed

for systems with softening. In fact, for the defect-free case (a = 0). multiple soludons are found.

ranging from periodic to solitary (Suo et aU. 1992h). However, uniqueness seems to prevail when

a defect is present.

3. DAMAGE PROGRESSION IN CERAMIC COMPOSITES

To be definite, the model is no\% interpreted in the context of ceramic-matrix composites.

even though conclusions may be applicable to other inelastic mechanisms. Figure 3 is a schematic

of damage progression in a notched component under monotonic loading CT. A matrix crack

initiates at 6 = 6j; prior to this, 6wi = 0. For a crack-like notch, Ji is governed by notch size a,

according to Griffith's formula

a, = (E'r0 / =)/2. (17)

This stress is insensitive to processing flaws in the matrix, so long as the flaws are much smaller

than the notch size.

For a circular hole, an initial flaw must be assumed in the vicinity of the hole, of size, say,

on the order of the fiber diametcr. Take the flaw to be a traction-free, penny-shaped crack of

diameter d, so that

i= (7rE'ro / 2d)i/2. 18)

This has been reduced by the stress concentration factor 3, and assumes that the fibers and mae,.x

have similar elastic constants. In practice, Ji may also depend on the hole radius a, for a larger

hole concentrates stress in a wider region, increasing the chance to trigger a bigger defect. Since a

)> d, the cracking initiation stress is larger for a hole than for a crack-like notch. In either case,

further loading may be sustained without fiber breaking. Consequently, C, is unimportant as far

as the ultimate strength is concerned.

After extending into the component, the crack is bridged by the fibers sliding against

friction. This inelastic deformation can be represented by a bridging law (Marshall etal. 1985)
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O"/ rr0 = (3 / 30)1/2. (19)

Upon assuming a deterministic fiber strength S, one has

c30 = ]S, (20)

and

60= RfE" 2 (1-f (21)

Here f is the fiber volume fraction, R the fiber radius, T the sliding friction of fiber/matrix

interface, and E, Em and Ef are Young's moduli for the composite, matrix and fiber,

respectively. In terms of primary processing variables, the material length identified in Section 2

now scales as

3)E I ao - RS / r. (22)

Thus, the "ductility" of a composite increases with increasing fiber radius and fiber strength, but

decreases with increasing friction of the fiber-matrix interface.

In practice, the fiber strength is statistical; S is taken to be some average value, since the

ultimate stress of a composite corresponds to the breaking of many fibers. It is wrong to take 6 as

physical separation of the matrix crack. As pointed out by Hutchinson and Jensen (1990). 3

should be inelastic deformation associated with fictional sliding-that is, total elongation of the

composite with a matrix crack minus the elastic deformation of the composite without the matrix

crack. The inelastic band consists of both the matrix crack and the frictional dissipation off the

crack plane. The above equations were derived from an approximate analysis of fibers frictionally

constrained in a matrix, and are valid when the slip length

I- R Ema(1- f) a (23)
2 Ef r

is several times fiber radius, which is typically the case in ceramic-matrix composites. Also note

that the square-root law is only valid prior to fiber breaking. Yet design with ceramic-matrix

composites may allow matrix cracking to relieve stress concentration, but require fibers to remain

unbroken, so that the square-root law is adequate for this purpose.

An important feature is multiple cracks. Broadly, multiple cracks provide additional

frictional dissipation sites or, equivalently, larger inelastic deformation to relieve stress
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concentration. As an illustration, consider multiple cracks emanating from a long, blunt notch in

Fig. 4. The matrix is assumed to be sufficiently brittle so that these cracks run across the

component at a low load without fibers breaking. If the slip lengths do not overlap with one

another and each spring is described by (19). the fracture energy is given by

F = 2 ao5°N (2-4
3

where Nis the number of cracks, presumably related to the ratio of notch root radius over slip

length. ',,ore detailed modeling is needed to take into account overlapping slip, analogous to

models for unnotched panels by Aveston et al. (1971) and Zok and Spearing (1992).

Nonetheless, to a first approximation, the effect of multiple cracks on load-carrying capacity may

be captured by a single inelastic band with a larger equivalent 80.

4. NOTCH SIZE AND MATRIX TOUGHNESS: a AND y

Now the calculated load-carrying capacity is presented in form (2). The strength of a

monolithic ceramic is only a fraction of its bridging strength (the atomic bond), and is sensitive to

processing flaws. By contrast, the strength of a composite is close to its bridging strength (the

fiber strength times fiber volume fraction), and is insensitive to processing flaws. To understand

this difference, consider an unbridged crack of length 2a, as in Fig. 5. The inelasticity-either

atomic separation or fiber sliding-is approximated by a rectilinear law in the band, and by 170 = 0

at the band tip. The standard solution is reproduced in the Appendix. Under monotonic loading

a, t.ae band length L is determined from (A4) by maintaining Ktip = 0. The ultimate stress cmax

is reached when 3 tail = 80. Eliminating the internal variable L from (A3) and (A4), Cottrell

(1963) obtained that

SIn sec =1.
tr~ v'o2 an)

This curve is labeled in Fig. 5 by 17 / Co03 = 0, to show load-carrying capacity as a function of

notch size.

For a tw~e grain ceramic, energy dissipates to separate a few atoms at the crack tip, so that

12

Tue. Dec 22, 1992



5CE'/co - I nm; the flaw size iS about the grain diameter, say a - 1 gm. Consequently. (Z -

103 so that Zna\ / CO , 1, confirming that the strength of a monolithic ceramic is much srnalicr

than that of the atomic bond. By contrast, for a ceramic-matrix composite, energy dissipates over

many atoms bv interface sliding. say J,,L"/oT - I mm, material processing is unlikely to break

many fibers on the same location, so that a < 1. Consequently, the strength is close to the

limiting stress Omax - YO = fS, and is insensitive to processing defects. This comparison reveals

the central concept of making strong materials: the limiting-strengt, for a composite is very low

compared with atomic bond strength, but amply compensated by a large inelastic stretch 35,.

which retains this strength in the presence of flaws or small notches.

Next consider the case F0 /4T"(o = 0. i, which is perhaps the largest value any well-

toughened ceramic-matrix composite may assume. The left-hand side of (A3) equals 6,,il / o0a,

and the left-hand side of (A4) equals (y/ ira) 1/2. Thus, for fixed a and y, (A3) and (A4)

prescribe the applied stress J / co as a function of ,il / I50, the band length Lla being viewed as

an internal variable. This C"-3,,il relation is plotted in Fig. 6 for y = 0.1 and various a.

Depending on a, the maximum, am,,a,, / c0 , is reached at either 8,, / t50 = I or 6,Wj / 60 < 1

The maxima so obtained are plotted in Fig. 5. Except for very small a, the difference between the

two curves is small. The curve for 'Y= 0.1 Lends to infinity for small a, which is consistent with

Griffith theory. However, this difference is practically inconsequential, for it only happens for a

notch smaller than fiber diameter. Corresponding plots have been made for the linear bridging law

and for a circular hole (not shown here); the trend is similar to Fig. 5. In the rest of the paper, we

shall focus on the case Fo / 0"060 = 0.

5. BRIDGING LAW SHAPE

The shape of the bridging law is uncertain in practice. Fortunately, load-carrying capacity

is a robust quantity: a different ; only modifies it slightly, not to affect the judgement of a

designer (e.g., notch-brittle or -ductile). Figure 7 demonstrates this for a sharp notch in an infinite
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panel, and Fig. 8 for a circular hole. On the bsi-, of the prci.dn i, d,,cuss.on, it b, ýsuthý.Ienl to

consider the case 10 / cr030 = 0, so that the inelastic band has extended across the component for

bridging laws with nonvanishing complementary energy. The curves in Figs. 7 and 8 ma. shift

somewhat as more accurate calculations become available, but the small difference in load-carrning

capacity for the various bridging laws may be inconsequential in practice. An explanation for such

small differences follows.

Instead of a, a modified dimensionless group, a/(E'r /cy), is used in Fig. 7, where F

is the energy to separate a unit area of the melasuc band:

- = a3oJ0f'oX(E)dXe. (26)

As discussed in Section 3, the inelastic band may consists of several matrix cracks, each permitting

fibers to slide, so that 60 should be regarded as the sum of all inelastic deformation.

Two limiting cases can be solved analytically; both are independent of bridging law shape.

As a --+ 0. stress concentration is fully relieved-that is, rtmu / "0 = 1. As a -a ,,, the

unbridged crack is long so that Griffith's formula applies:

57max / Cao =9ra / (E'r / co . (27)

This curve is indicated in Fig. 7, which is only valid for lrge a. The mechanics problem

involved here, which consists of two elastic substrates joined by springs (inset of Fig. 7), is

different from that in Griffith's original paper. Nonetheless (27) can be confirmed by an energy

argu:ient. A simple interpolation of the two limiting cases is

dmax / a0  I + , / (rEVI) 2  (28)

Th.is is a close approximation of the computed result for the liner law, and a fair representation of

the curves for other laws. One can use this equation for arbitrary a, as an extrapolation of the

Griffith formula (27).

Equation (28) can also be derived from an energy consideration. Under the applied load

E, the springs are nonuniformly stretched: tail > S, where 3 and C are related by the spring

law. In equilibrium, the increment of the combined strain energy in the substrates and springs
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must vanish for any small increment of the notch size. Thus,

CIA40 /° 6 (c)de 7W d E'. (293

The left-hand side is the energy decrease in the springs, and the right-hand side the energy increase

in the substrates, for a unit enlargement of the notch under fixed load. The latter is approximate,

with relaxation due to the springs ignored. Equation (29) becomes exact as a - •, which

reduces to (27); and is also correct as a -- 0, since 6,iH = 3 in this case. Specializing (29) for the

linear law X(e) = e, one obtains (28).

Plotted in Fig. 8 is the load-carrying capacity reduced by a circular hole, which is

constructed by using finite element solutions, discussed in the Appendix. Note that the difference

for various bridging laws is still small, and that the two limiting cases are given by (1).

Normalized as such, it appears from Figs. 7 and 8 that load-carrying capacity is insensitive

to bridging law shape. We have not carried out comparisons other than for notches in an infinite

panel. Nonetheless the normalization scheme used here separates the les of the shape and the

scale of a bridging law. This is of practical significance. Once charts are constructed for idealized

bridging laws with important design features (e.g., fasteners), a new material can be used by

fitting its bridging law to one of the idealized laws. This approach is equally valuable in design of

composites. In this phase, the detailed bridging law shape may be unknown, but the scale of the

bridging, ao" and 60, can be related to microstructural variables. Whether a material is viable for

a particular application can be assessed, before the material is made, by consulting the charts.

6. EFFECT OF aiw

The effect of finite panel width is studied with 10 / c"03o = 0. The model consists of halves

joined by springs, with an unbridged sharp notch (Fig. 9) and a circular hole (Fig. 10).

Independent of bridging law, full notch-ductility is reached when a/(FE'o) 0= . Stress

concentration is completely relieved, so the load-carrying capacity is governed by the net-section:

"max / a0 = 1 - a / w. (30)
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This is the straight line in Figs. 9 and 10.

Notch-brittleness prevails for large a/(FE'/a). In this limit, Linear Elastic Fracture

Mechanics applies for a sharp notch, regardless of the bridging law shape. Thus,
or.,= rF2  a / .! 1

Go L FE"/U2j
where F is a dimensionless number in the stress intensity factor for a crack in an elastic strip.

approximated by (Tada et al. 1985)

F(a / w) = [I - 0. 5(a / w)+ 0. 326(a / w)2][1 - (a / w)]-1/ 2 . (32)

An interpolation similar to (28) is "0 y- 2  F-11" 2

I0 - a rE'/uJ (33)
This equation is plotted in Fig. 9, and expected to be a fair approximation for the entire parameter

range and arbitrary bridging law, and highly accurate when a / (FE'/a"2) > 2, as inferred from Fig.

7.

For a circular hole, when a/(FEV/r) is large, load-carrying capacity is reduced by the

stress concentration factor k, namely

•ma, t/ o' = I/k. (34)

The handbook solution (e.g. Peterson 1974) of the stress concentration factor for a circular hole in

an elastic strip, k, is indicated in Fig. 10, as the boundary of notch-brittleness. A finite element

calculation using linear springs is carried out for intermediate a /(lE/r2). Linearity suggests that

the stress at the band-tail takes the form

atail = Uf(a,a / w). (35)

The applied load d -4 Cyram when a,,,l, = crO0, so that dm,, / c0 = I/f. The calculated coefficient

f is plotted in Fig. 10. Judged from Fig. 8, the curves in Fig. 10 should be fair approximations

for other bridging laws.

7. CONCLUDING REMARKS

Notch-sensitivity can be substantially reduced by inelastic deformation. In a ceramic-matrix

composite, the inelastic deformation is due to one or several matrix cracks bridged by frictionally
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sliding fibers. The strength of notched ceramic-matrix composites is found to depend on notch

size, as governed by a dimensionless group a / (3ff'IU')). Notch-insensitivity is attained if the

composite is made such that a I(3 0E'/o') - 1. It is found that the shape of the bridging lay, is

unimportant as far as notch strength is concerned. Although the results are interpreted for ceramic-

matrix composites, they may be applicable for other materials or inelastic mechanisms. For

example, the notch strength presented here is the same as the residual strength of a metal-matrix

composite with a fatigue-cracked matrix.
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APPENDIX

Representative bridgine laws are drawn in Fig. 2. Solutions for a hole/crack in an infinite

body are reviewed here. For the rectilinear law, the solution is linear in both the applied stress and

the closure-stress, so that

3(aitE'/a = fIC - f 2ao, (Al1

and

Kip / = f 3a -f 4 CO, (A2)

with coefficients fs depending on L/a only. For a crack-like notch the solution is (Tada et al.

1985)

3IIE 4(712 _ )1/2 E _ 2Cos-'(' / )]+ 8In q, (A 3)

and
Ktip = r/l12[ a 2 cos-,(,I/r1) (A4)

where r7= 1 + Lia. Coefficients for a circular hole are obtained by using finite elements (Ho

1992).

The square-root law is written

a / co = (3 /60)1/2, (A5)

The solutions take the forms (e.g., Gu et al. 1992)

atait / acto = T(d / aaO, L / a), (A6)

with cra being connected to i5tal by the bridging law, and

KUP / acro4-a = -(d / ac,,, L / a). (A7)

Solutions for a crack-like notch are given by Marshall and Cox (1987), Bao and McMeeking

(1992), and Cui and Budiansky (1992). Solutions for elliptic holes are given by Gu et al. (1992).

The linear law is written

a / ao = 8 / 60 , (A8)

The coupled spring-substrate is linear, so that

artaij / U = gj(a, L / a), (A9)
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and
Kt,p / CYN-irga = 92 (a, L / a). (A 10)

Solutions for a crack-like notch are given by Rose (1987), and for elliptical holes by Gu et a.

(1992).

The linear softening is an idealization of the following situation. Some bridging

mechanisms, notably ductile reinforcement, attain the limiting stress at a very small stretch, and the

stress then drops with a long tail. The initial rising portion may be conveniently lumped into F0,

leaving the post-limit tail idealized to be linear softening. The bridging law is thus

a/" 0 =I- - /'50 . (All)

The reward for such a simplification is that the limiting-stress, ao, can be treated as a residual

stress, so that the coupled substrate-spring becomes linear, which can be solved by using

commercial finite element codes (e.g. Suo et al. 199 2a). The solution is still of form (A l) and

(A2), but now the coefficients depend on both a and L.a.
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FIGURE CAPTIONS

Fig. I An inelastic band is viewed as either a bridged crack or an array of continuously

distributed dislocations.

Fig. 2 Idealized bridging laws.

Fig. 3 Damage progression in ceramic-matrix composites.

Fig. 4 Multiple cracks modeled as an inelastic band.

Fig. 5 Effect of the two primary dimensionless groups.

Fig. 6 Relation between load and tail-separation (rectilinear bridging).

Fig. 7 Notch ductile-to-brittle transition (sharp notch).

Fig. 8 Notch ductile-to-brittle transition (circular hole).

Fig. 9 Effect of aiw (sharp notch).

Fig. 10 Effect of a/w (circular hole).
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ABSTRACT
The tensile strength of a fiber reinforced ceramic composite containing a through-the-fiber

flaw in the form of a sharp crack is studied. The strength of a brittle unreinforced ceramic
containing a sharp crack of length 2a0 , subjected to uniaxial load in the direction normal to the

crack plane, is given by linear elastic fracture mechanics as a, = Km /ni7-, where Km is the

fracture toughness of the material. However, for a fiber reinforced ceramic, the strength can only

be determined on the basis of a full analysis of crack growth in the matrix and the failure of crack
bridging fibers. The tensile strength of a flawed ceramic material that is reinforced by fibers

aligned in the direction perpendicular to the flaw surfaces is studied in this paper. Crack bridging

fibers are assumed to slip relative to the matrix when a critical interface shear stress is reached.
The orthotropy of the composite produced by the presence of aligned fibers is rigorously accounted

for in the analysis. The dependence of the composite tensile strength on fiber tensile strength,
matrix toughness, flaw-size, and frictional shear stress at the fiber-matrix interface is determined

and described in terms of a universal set of non-dimensional parameters.

NOMENCLATURE
2a0  initial crack size

cf fiber volume concentration

A orthotropy factor (see Eq. (1))
Km matrix toughness

E, Ef, Em Young's moduli (composite, fiber, matrix)

R fiber radius

S fiber strength
V, Vp, V,, Poisson's ratio (composite, fiber, matrix)
"t fiber-matrix sliding shear resistance

00 matrix cracking-initiation stress
oyc steady-state matrix cracking stress

cfS base fibers-only strength



A modified toughening ratio (see Eq. (14))
0.5 tensile strength of flawed composite

INTRODUCTION
This paper is concerned with the tensile strength of flawed, fiber-reinforced ceramics. On

the basis of linear elastic fracture mechanics, an unreinforced brittle ceramic containing a sharp,
two-dimensional flaw of length 2a0 , loaded in the direction perpendicular to the faces of the flaw,

has a tensile strength given by a, = K,,/ / .nt' , where K.. is the fracture toughness of the

material. However, the tensile strength of a fiber reinforced ceramic can only be determined by a
full analysis of a process involving matrix crack growth, frictional sliding along the fiber-matrix
interfaces, and failure of crack bridging fibers. We shall study the configuration shown in Fig. 1,
in which a large, aligned-fiber reinforced ceramic body cmntaining an, isolated center flaw of length
2a0 that cuts through the fibers is subjected to uniform remote tension in the fiber direction. We

define the tensile strength as the maximum applied stress the composite can carry, and seek to

detenne this stress theoretically.
As in most previous studies the fibers are assumed to be held in the matrix by friction; that

is, sliding bewc-tn the fibers and the matrix is suppressed only if the interface frictional shear is

less than some limiting stress 't. The brittle ceramic matrix is assumed to have a fracture toughness
Km, and, except near the tip of the matrix crack, the composite is treated as a homogeneous

orthotropic elastic medium. The effects of crack bridging fibers are taken into account by means of

a spring model that embodies the additional assumption that the frictional resistance is low enough
to permit long slip lengths relative to the fiber diameter. Failure of the composite is assumed to be
associated with the fracture of crack-bridging fibers in the matrix crack plane and we assume that

there is no statistical variation in fiber strength. It is further assumed that during the course of
matrix crack extension leading to the final failure of the composite, no longitudinal splitting or

shear banding takes place in the vicinity of the flaw tip. Both splitting and statistical variation in'
fiber strength r-ay often be important, but we neglect them in the present study.

The mechanical behavior of both flawed and unflawed unidirectional fibrous composites

has been a subject of research efforts for the past two decades. Matrix cracking without associated
fiber failure is a distinctive tensile damage mechanism often observed in unidirectional fibrous

ceramic composites. The tensile stress required for the steady-state propagation of a single, long
matrix crack, known as the matrix cracking stress, was first evaluated by Aveston et al. (1971) for
the limits of large and small frictional shear resistance at the fiber-matrix interfaces. More recently,
Budiansky et al. (1986) extended these results to intermediate friction values. For the limiting case

of very long, initial flaws, the solution for tensile strength has been obtained by Budiansky and
Amazigo (1989) on the basis of the small scale bridging condition, wherein (see Fig. 2) the bridge
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length Aa prior to fiber failure is ver' small relative to original flaw length 2a0 . Although

Marshall and Cox (1987) have done extensive calculations for a composite with a flaw of arbitrary

length, their presentation is quite complicated and it is difficult to extract the desired general,

comprehensive results for the composite tensile strength from their paper.

There are many parameters governing the tensile failure of unidirectional composites, such

as fiber tensile strength, matrix toughness, flaw-size, fiber and matrix elastic properties, and fiber-
matrix frictional shear stress. We shall, however, be able to determine the composite strength o,

in terms of just the following three basic stress quantities that suffice to characterize the flawed

composite:
* a0, the critical applied stress for the initiation of matrix cracking;
"- c,,,,, the steady-state matrix-cracking stress; and

S*Cfs= cfS, the base fibers-only strength,
where S is the fiber fracture stress and cf is the fiber volume concentration. More precisely, the

ratio of a, to any one of these stresses depends on only two ratios of the three parameters. We
start with a qualitative description of the matrix crack growth process that leads to failure of a

flawed, unidirectional fiber composite.

DESCRIPTION OF FAILURE PROCESS

When a tensile stress a is applied to the composite in the fiber direction (Fig. 1), failure

due to a preexisting, through-the-fibers flaw that is normal to the fibers always begins with
growth of the crack in the matrix (Fig. 2), and ends with the fracture of bridging fibers. Consider
a typical curve of applied stress a vs. matrix crack growth Lia, shown schematically in Fig. 3.

Such a curve would be governed by the requirement that the average energy release rate along the

matrix crack front must remain equal to the critical value for matrix crack extension. In the absence
of fiber failure, a typical aF - Aa curve has the following qualitative features. Crack growth starts
when the applied stress ay reaches the initiation stress a0 , which is essentially a crack-size

parameter. Due to the constraining effects of crack-bridging fibers, matrix crack growth requires
increasing applied stress a until a peak value ap is reached at Aa=Aap. Then the crack growth

continues under decreasing applied ;, which approaches the steady-state matrix cracking stress

omc asymptotically for Aa --+ -. (It is also conceivable that for sufficiently small values of the
initiation stress a0, the applied stress ay may never reach a peak value at a finite Aa, but simply

increases monotonically as it approaches the steady-state matrix-cracking stress a.mc

asymptotically.) After the matrix crack extends to infinity, the applied loading is supported entirely

by the crack-bridging fibers, and the vertical line at Aa = indicates that further increase in a is

then possible.
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Now consider fiber failure. Corresponding to each point on the a - Aa curve, there is a

smeared-out bridging stress distribution p(x) that has its maximum value p(ao) at the original flaw
tip. Let Aaf denote the amount of matrix crack growth corresponding to the first-fiber-failure

criterion p(a 0 )= cfS, and if Aaf < -, let Of be the value of the associated applied load.

Similarly, for the composite containing a matrix crack that has grown to infinity from each edge of
the original flaw (Fig. 4), let o&,, denote the value of the applied stress a that gives p(a 0 ) = cS.

In both cases, we find that maintaining the applied load c at the value that produces the first fiber

failure results in the failure on the matrix crack plane of all the fibers. Accordingly, tz trength
crs of the composite is set by one of the following three conditions:

(i) the flaw-tip fibers fail during increasing applied stress at a value of applied stress
Of < UP and Aa f < Aap; then a 5 = af;

(ii) the applied stress reaches the peak value op without the occurrence of fiber failure, and

UP exceeds the value of the stress 0 frnc .-Jed to produce flaw-tip fiber failure when the crack is

infinitely long; then a, = UP,

(iii) the matrix crack extends to infinity without fiber failure, and a is less than afnc; then

Os = f0 nc.

A complete determination of the strength of flawed composites will therefore require

consideration of both the transient crack-growth problem of Fig. 2 and the auxiliary problem of the

fully cracked composite shown in Fig. 4.

MATRIX CRACKING: INITIATION, GROWTH, AND STEADY-STATE

Crack growth criterion

We shall now discuss an appropriate criterion for matrix crack growth in an aligned-fiber

composite (Fig 1). What we seek is a criterion based on the stress-intensity factor of a crack,

bridged or unbridged, in an equivalent, uniform, orthotropic (but transversely isotropic) material
(Fig. 2). Consider the plane-strain energy release rate G for a Mode-I crack lying in the plane of

transverse isotropy. We can write
I-v2 2
I= K1  (I)

G AE I

where K1 is the conventional stress-intensity factor, E is the Young's modulus for longitudinal

tension normal to the crack plane, v is the associated Poisson's ratio (for the ratio of transverse

contraction to longitudinal extension), and A is a factor that characterizes the orthotropy. We will
assume that matrix crack growth occurs when thi. orthotropic energy release rate G, given by (1),

satisfies the condition

S0 (- ctu )m (2)

where Gm is the critical energy release rate for fracture in the ,natrU, given by
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G EMK (3)

in terms of the elastic constants of the matrix and its fracture toughness Km,. The factor (1-cf)
accounts for the reduction in length of the edge of the matrix crack due to the presence of the
aligned fibers. It follows that the critical orthotropic stress intensity factor KIC for matrix cracking

in the direction perpendicular to the direction of fibers in unidirectional fibrous ceramic composites

is

K. -V:'cf)Km (4)
E(V 2 ) -

The magnitude of A as a function of the plane-strain compliances of an orthotropic material
follows from the formula given by Tada et al (1985) for the energy release rate (see Appendix A).
If we let E, Ef, and Er be the Young's moduli of the composite, fiber, and matrix, respectively,

and if we assume, for the sake of simplicity, that fibers and matrix have the same Poisson's ratio
v, = v= v, then E is given by the rule of mixtures formula E = cfEf +(I- ctf)E,. The

dependence of A on Ef /E. and cf for vf = vm = 1/4 has been calculated on the basis of the Hill
(1965) self-consistent estimates for the effective compliances of an aligned-fiber composite having
isotropic constituents, and the results for A vs. cf are plotted in Fig. 5a for various values of
EfI/Em > 1. (These curves, and the associated formulas shown in Appendix A, correct errors in

the earlier work by Budiansky and Amazigo (1989)). Fig. 5b shows A for several values of
Ef/Em < 1.

It is important to note that the parameter KIC is a material property of the composite which

encompasses information about matrix toughness, fiber volume concentration, the orthotropy
induced by unidirectional fiber reinforcement, and the moduli of the matrix and composites. In
order to analyze the matrix cracking problem illustrated in Fig. 2, we will be calculating the
orthotropic stress intensity factor K, in the presence of both external loading and crack bridging
fibers, and then using K, = KIC as the criterion for matrix crack growth.

Matrix cracking initiation
For the special case of matrix cracking initiation in the configuration of Fig. 1, we can use

the familiar formula K, = ofri•-, which is valid for any anisotropic as well as isotropic 2D elastic
body (Sih et al., 1965). Setting K, = K1Cgives the matrix crack-growth initiation stress of the

composite -- one of our three basic stress parameters -- as;oo = KJ4;-a (5
Thus 00 may be regarded as a crack-length parameter, decreasing like ao1 /2 . Note too, that for
vf = v, = v, the initiation stress c0 is related to thc corresponding strength o(S of a unreinforced,

cracked monolithic ceramic of the same crack geometny by
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=A(l-cf)E
00 Eg 50 (6)

Matrix crack gzowth

Equations connecting the applied stress, the bridging-fiber stress distribution, and the

matrix crack extension in the absence of fiber failure (Fig. 2) are presented in Appendix B. In this
formulation the orthotropic stress-intensity factor is kept equal to KIc, and the smeared-out
bridging fiber stress p(x) is related to the displacement v(x) of the upper crack face (Fig. 2) by

p(x) = (7)
where the equivalent spring constant 03 is given by

4c 2EE 2'r
' R(cf ) 2E (8)

This relation follows from the assumption of "large" slip lengths adjacent to the crack faces and
neglect of initial stresses (Aveston et al 1971; Budiansky et al 1986; Budiansky and Amazigo 1989;

Hutchinson and Jensen 1991). Various non-dimensional forms of the governing equations and
their numerical solution are discussed in detail in Appendix B.
Steady-state matrix cracking

As already mentioned, when the matrix crack extension becomes large, the applied stress 5
approaches the steady-state matrix cracking stress of Aveston et al (1971). Under the assumptions
adopted, the steady-state matrix cracking stress amc is given by

1
6c2 1 2 2 K'- ]

J. E (9)

where R is the fiber radLý and t is the interface slipping shear resistance stress. This is the
second of the three basic stress parameters that define the composite; the third one, we remind the
reader, is just ofs=cfS.

M kTRIX CRACK GROWTH AND PEAK STRESS
The analysis and calculations described in Appendix B provide the connections between the

applied stress a and the matrix crack extension Aa (Figs. 2-3) shown nondimensionally in Fig. 6.
(These relations assume no fiber fracture, and so the basic stress parameters cfS is not involved.)
The abscissa O0/Omc is a measure of the original flaw size. Note that for Aa/a 0 >.5 the curves

giving c/omc vs. o&o/m, cross each other in the vicinity of ao0/Om=.95. It follows that the peak
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stress ap during crack growth (see Fig. 3) must occur for Aap/ao > 5 whenever the flaw size

corresponds to O/ < .94; but for o0/omc > 1, Aap/ao must be less than 0.5!

As discussed earlier, the strength a; of the flawed composite will, for some parametric
ranges, be equal to the peak stress ap attained during matrix crack growth (Fig. 3). The results for

op obtained from the solution of the crack-growth equations are completely described by the curve

in Fig. 7, which shows op/Om, as a function of o0/Omc. (This curve is actually the upper

envelope of the family of curves in Fig. 6). Note that up is almost always very close to either Co
or 0 mc. The accuracy to which we could calculate a1p was much better than that of the associated

values of Aap. It may be that for sufficiently small values of O0/Qmc, cip becomes equal to amc,

corresponding to a monotonic increase in the value of the applied stress as the matrix crack grows
to infinity (see Fig. 3); but the numerical calculations do not resolve this point. In any case, this is

not important, and, as we shall see, parametric ranges for which the strength o, is given by oP
turn out to be small.

FULLY CRACKED MATRIX: AN AUXILIARY PROBLEM FOR Ofmc
We will find that there are significant ranges of the ratios of the three basic stress

parameters for which failure of the flawed composite occurs only after the matrix crack has become
infinite, and then Os equals the strength Ofmc of the fully cracked configuration sketched in Fig.

4. Clearly, afmc is independent of the fracture toughness Km of the matrix. But because of the
bridging-fiber stress concentration induced at the edge of the original through-the-fibers crack,

Ofmc suffers a reduction from the base fibers-only strength cfS it would have if the flaw were

absent. An integral-equation formulation for the calculation of Ofmc is given in Appendix C in

terms of the non-dimensional combination
3 = -O0mc

L-S = -J (10)
Cf Sco R

of the basic stress parameters, where
[67t(l - v2 )cfEEf (1

LA(l-cf) Em.
The parameter a0, independent of Kin, may be regarded as a measure of the original flaw size.

The solution found numerically for yfma./(cfS) as a function of this parameter is shown by the solid
curve in Fig. 8". A remarkably accurate approximation to this result is given by

"See Suo ct al (1992) as well as Bao and Suo (1992) for the results of similar calculations based on other bridging

laws, and suggestions concerning the possibility of unifying these results over a wide range of bridging laws via

energy concepts.
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3 r ,-4/3-/- 
2 13j3 1 2 (I2

"cfsao, ( fms ) s)

which provides the dot-dash curve in Fig. 7. This formula was discovered fortuitously, and we

have not found a persuasive way to derive it.

STRENGTH Os: RESULTS AND DISCUSSION
We can now put together the final results for the strength a, of the composite in terms of

the basic stress parameters a0. am,, and cfS, and we will display these results in several different
forms to bring out various trends. By monitoring the magnitude of the bridging-fiber stress at the

original flaw tip during the matrix crack growth, as calculated from the analysis of Appendix B, the
magnitude of the load of corresponding to fiber failure during this growth has been determined,
and, on the basis of the discussion given in the earlier description of the failure process, the
appropriate choices have been made for the assignment of of, 0p, or afmc to the strength oa. This
has been done on the basis of various non-dimensional forms of the governing equations,

described in detail in Appendix B.
One nondimensional form of the results for a, is

as =F-(-fS; I ° ) (13)
00 k 'mc 0 'mc1

where as/ao may be regarded as a modified strengthening ratio provided to a flawed ceramic by

aligned-fiber reinforcement. (The actual strengthening ratio is %/saO0, to which O'/o0 (see Eq.

(6)) is a fair approximation.) We prefer, however, to introduce the parameter

A =ml (14)
l%..mc )

in lieu of cfS/amc in exhibiting the results fer the strength of the composite, and we have done so

in Fig. 9, where we show curves of os/o0 vs. A for various values of o0/Ome. The quantity A is

the modified roughening ratio K/Kjc found by Budiansky and Amazigo (1989) for the case of
small-scale bridging. The significance of A is that it provides the modified strengthening ratio of a
composite containing a very long initial crack, which corresponds to a very small value of 00/0,,.
Thus, o;/o 0=A for o&/mC=o--, and this is an upper bound to o/oo for all finite values of 0o/om;.

In effect, the sequence of curves in Fig. 9 shows quantitatively how much the small-scale-bridging

strengthening due to aligned-fiber reinforcement is reduced for flaws of decreasing size.
As indicated by the key to the line types in Fig. 9, the strength a,, at each fixed value of

oI0/mc, always starts out equal to of et low values of A; for a sufficiently large value of A, this
first range, associated with fiber failure during matrix crack growth (Fig. 3), merges into a

generally small interval in A for which o, is given by the "peak" stress op; and then, beyond
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another critical value of A, failure at cs=ofmc in the fully cracked matrix becomes the rule. Note

that because o0o/am does not depend on S, each of the curves of Fig. 9 can be interpreted as

showing the influence of fiber strength on the composite strength.

The results for cy have also been computed in the form

Cs= CfS ___) 15

and Fig. 10 shows ojoo vs. A for various fixed values of cfS/oo, which may be regarded as a

crack length parameter that is an increasing function of the initial flaw size. Since cfS/a, is

independent of the shear stress r, each curve in Fig. 10 shows how the fiber-matrix interface

friction affects the strength. The matrix cracking stress am, is an increasing function of T (Eq,

(9)), and therefore the small-scale-bridging toughening ratio A gets larger as 'r goes down. The

curves in Fig. 10 show that for flaws of finite size the strengthening generally remains an
increasing function of /it, except for some insignificant isolated parametric ranges.

In both Fig. 9 and Fig. 10, displaying the ratio adoo as the dependent variable provides

the answer to the question: how much has the flawed matrix been strengthened by aligned fibers?

An alternative viewpoint is to contemplate the base fibers-only strength ofs=cfS as a starting point

of reference, and study what happens to the ratio o,/ cfS under the degrading influenc: of a flay,

and the reinforcing presence of the matrix. A useful representation of the results is in the form

US= 3_Y - o mc (16)
CfS ( mcSG CfSJ)

as shown in Fig. 11. The abscissa '0 is a flaw-size parameter that is independent of the matrix

toughness Km,. and the increasing values of c'mdcrS labeling each curve reflect increasing values

of Km,. The curve for OmjcfS--O reproduces the one in Fig. 7; for Km=0, the matrix will crack out

to infinity as soon as load is applied, and then the strength will be given by ofm'. The curves in

Fig. 11 show that ofm, constitutes a lower bound to the strength, and that for reasonable finite

values of om/(crS) only modest increases above this value are obtained. In terms of the parameters

of Eq. (16) and Fig. 11, the identity of the failure mode can exhibit a curious progression. Thus,

for amjCrS=.75, as is given by of for large flaw size; then, as a0 decreases, cy,=o, over for a tiny

interval of the abscissa; this is followed by os=ofmc along the bottom curve; and finally, below a

critical value of flaw size, c=op again. Actually, values of the abscissa much below unity are

unlikely to be in a practical range of interest.

The formula (12) suggests that the results of Fig. 11 might usefully be replotted as shown

in Fig. 12, wherein oJ(cfS) is shown over the full practical range of (ýO)-112. Note that for

omdcS greater than some critical value between .75 and .85, failure always occurs during finite

extension of the matrix crack.
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NUMERICAL EXAMPLES

To provide some quantitative feel for the theoretical results of Figs. 9-12, ve

present a set of numerical examples for a well-documented ceramic composite system that %%as

used in matrix cracking experiments by Marshall et al (1985), consisting of silicon-carbide fibers in

a lithium-alumino- silicate glass matrix. The nominal values of pertinent parameters were
cf = 0.5 1 R = 8 pm

vrn = vf =0.25 GP Km = 2 MPa- my

Em =85GPa S =I GPa

Ef = 200 GPa J t =2 MPa

On the basis of this data, we get
A=0.95 amc=265MPa A=3.8

Table I shows the strength predictions of the present analysis, for several values of flay,
length 2a0 and the corresponding values of 00, cfS/o0, and do. Numerical results for 0, are
given, as well as the ratios ,/a(o and aJ/(cfS); the failure type (i.e,. of, ap or Gfnc) is listed.

TABLE I

2a 0 (j.m) o0 (MPa) CfS/0o a0  as (MPa) ajao0 0,J(cfS) type

32.5 250 2 0.60 415 1.7 0.83 ofmc

130 125 4 2.38 319 2.6 0.64 Otmc

290 83.3 6 5.36 257 3.1 0.51

520 62.5 8 9.53 213 3.4 0.43 a,

In these examples the strength as0 of the unreinforced ceramic is about 10% higher than ao

(Eq. (6). Thus, the composite containing a flaw (or sharp notch) about 1/2 mm in length is

strengthened considerably (by about a factor of three) by the presence of aligned fibers that do not

bridge the initial flaw. But the failure mode, of the of type, remains catastrophic, occurring before

the onset of widespread matrix cracking at amc. In contrast, the strength of the matrix with the

smallest of the flaws considered above is increased by only about 50%, but this is enough to raise

a, above ,mc.

COý UDING REMARKS

Our study has produce- ;,eoretical results fcr the tensile strength of a flawed.

aligned-fiber ceramic composite in succinct non-dimensional forms that encompass the effects of a
large number of geometrical and physical variables. The results for the strength ao. displayed in
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terms of three basic characterizing reference stresses o0, amy, and cfS in Figs. 9-12, may pr3vide

a basis for the micromechanical design and analysis of such materials, as well as for the

formulation of design criteria. A useful lower bound to the strength a, is given by the post-matrix-

cracking failure stress ofm, provided by Fig. 8.

The present study provides a sound foundation from which to proceed to elaborations that

include the effects of initial stress and statistical varations in the fibe- :.:ngth. The latter. in

particular, can lead to intra-matrix fiber failures at locations off the crack faces, and the consequent

higher fiber-pullout lengths during failure can produce substantial increases in predicted composite

strengths (Thouless and Evans 1988). However, the extent to which design should rely on

beneficial effects of statistical dispersions in fiber strength remains an open question. Finally, it

should be emphasized that the possible intervention of failure modes not considered here, such as

longitudinal splitting or shear localization, requires investigation.
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APPENDIX A

ORTHOTROPY FACTOR A
This Appendix corrects the one with the same title in the paper by Budiansky and Amazigo

(1989), in which several blunders occur.
We consider a transversely isotropic, orthotropic elastic material satisfying the stress-strain

relations IELx = oR/E- vay/E - Voz/E

Ey =-va1 /E + tE- v/- /E (Al

cz = ax/E-voy /E+oz/E

Yy1 = -TRY/G

According to Tada et al (1985), quoting results of Sih et al (1965), the plane-strain energy release
rate at the edge of a mode-I crack lying in the transversely isotropic x-z plane is

q=CK' (A2)
where

-1/2

C= I A22 [ ."X22., 2A, 2 +A 66 ] (A3)
and 2 A1 j 2At i

and the Aij are defined by the plane-strain constitutive relations
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EX = All. + A 1 2 0y

FY = AI20x + A 2 2ox (A4)

Y'XY = A66,Txy

The Aij are given by
-V2 v(I + V) 1 - v2E/E (A ll = E ' A 12 =-E ' A 22 = E ' A 66 = GA S

E ' 2 E G (5

Hence, in the representation

G 0(1 - v )K 1(A6)
AE

we have
A = I-v 2  (A7)

CE
For the aligned fiber composite, the elastic constants E, E, G, !3 have been calculated for the case

v=vf=Vm in terms of cf, Em, and Ef, and the resulting dependence of A on cf is plotted in Figs.
5(ab) for various values of Eu/Era.

APPENDIX B
FORMULATION AND NUMERICAL SOLUTION FOR MATRIX CRACKING INITIATED

FROM A CRACK-LIKE FLAW

Formulation

This section details the formulation of an integral equation and an associated scalar equation

for matrix cracking that is initiated from a preexisting flaw. The matrix crack together with the
original flaw is modeled as a crack of length 2(a 0 + Aa) (see Fig. 2) with a cohesive, bridged zone

of length Aa at both ends. The upper crack face displacement is
______ 2 C (ao+a)+As

2(l- v) 2(1--v') i(ao+Aa) 2 -x2 + 2 ,v(x) = A- a' -aA)+ 0)2-
a+fAE J lo (ao + Aa)2  x - .(ao + Aa)

(B 1)

Except for the factor A, the first term is the standard crack face displacement due to remote uniform
loading of an isotropic material. The second term is the crack face closure displacement due to the

bridging stresses, and, again except for A, is obtained by superposition of the crack face

displacements due to concentrated loading on crack surfaces given by Tada et al. (1985), The

orthotropy factor A, defined by Eq. (1) in terms of energy release rate. correctly takes orthotropy
into account in this expression for displacement. (This can most easily be shown by weight-

function considerations.) An integral equation for p(x) may be obtained by equating v(x) in (B 1)
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to [p(x)/03J in accordance with the bridging law (7), and then differentiation with respect to x
gives

Pdp(x) 20'-'(0- v2)x 2ao+A t2 7to
d rAE I(a0 +,Aa)2 _ X-2_x 2

for ao0_x:5a,+a (B2)

A scalar equation that must be satisfied simultaneously with (B2) is obtained by asserting that the
orthotropic stress intensity factor KI (which depends on ; and p(x) in the same way as for
isotropy) must remain equal to KIC. Hence (Tada et al, 1985)

K, = cyt(a + Aa)- 2 a0 +7Aa f P (x) dx= KIc (B3)7I /(ao + a-x2
a,

By making the substitutions {X = (aO + Aa)s p(x) = amcq(s)
a 1 y=IMC'o=11. (B4)

I + Aa/a 0 O mc a0 =Oamc

one may express the governing equations (B2) and (B3)in the normalized forms

1,d--sq = - = f2(t,s)q(t)dt + 7 for as<1 (B5)

I- R ff 3(s) q(s)ds = 4,-l. (B6)

where
_ y , 2ts) tI2

f(Y)-2 t -) and f3(s)= _. (B7)

For assigned values of a, Eqs. (B5) and (B6) can be solved for 1; and q(s) versus Io, and thereby
provide the results of Fig. 6, and the curve for op/on, in Fig. 7. The condition of fiber fracture at
x=ao is q(l)=cfS/Omc. Hence, for given values of 10 and crS/omc, Eqs. (B5) and (B6) can be
solved (by a Newton-Raphson technique) for the corresponding distributions p(s) and magnitudes
of a and Lf=-cr/.mc at fracture, and then the points for ooo./oo=-/aZf/ on the dot-dash curves

of Fig. 9 can be plotted.
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To get points on the dot-dash curves of Fig. 10, we assign values of cfS/0 0 as well as

cfS/Ormc, replace To in Eqs. (B5) and (B6) by the ratio of these quantities, and similarly solve for

Zf.
Finally, to plot the curves for o=of in Figs. 11 and 12, it is convenient to renormalize the

governing equations by letting
EO (T3 p(s),'

- C 4s)=- (B8)
csYGCfS CfS

to get

1V•-sq(s)dq(S)=ds fiso f jf 2 (t,s)q(t)dt+2 - for a_5s!_1 • B9)

i- Jjf3(S (ss)ds= Omc) '/-(B 10)
ot

The fracture criterion is now 4(1)=1, and so, for assigned values of a0 and aOm/(cfS) the

magnitude of 1. = if corresponding to this condition can be found from Eqs. (B9) and (B 10).

We omit a detailed description of the fairly straightforward procedures used to plot the

curves in Figs. (9-12) corresponding to the results in Figs. 7 and 8 for oYP and 'fmc.
Numerical procedure

This section describes the numerical procedure used to solve Eqs. (B5) and (B6) for q(s)

and Z; the method is equally applicable to Eqs. (B9) and (B10). Make the substitutionss =½1[(I+a)+(I-a~z], t-½[(I+a)+(I-oO;I], q(s(z))--Q(z) (1311)

in Eqs. (B9-B 10) to get

._j Q(z) dQ(z) -4fi[s(z)] l-O 1-(81 72)zz)dQz) f- f2 [t(ý), s(z)]Q(C)dý + - 2 (BI12)

dz 3n2 2 2 1 2 22

for -1:5z51, and

Y'_1 t fA[sWz) Q(z)dz = -iayo (B 13)

-1

Note that the displacement v ,c 4'F near z=1, and since Q - -v it is appropriate to write
MQ(z) 0 (- z)r" I akTk-I (Z) (B 14)

k=I

where Tk(z) is the Chebyshev polynomial of the first kind of degree k. For given values of a, and
7.0, the M coefficients ak, together with the additional unknown Z, were determined by

collocation of Eq. (B12) at the M points

z, = ( 7' r 1,2,... M) (B15)
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and enforcement of Eq. (B13). The definite integrals with respect to z in (B12) and (B13) wvere

evaluated by means of the general Cauchy-Chebyshev formula (Erdogan and Gupta 1972)

fz:-;)dJ1-; = (r =1,2,....M) (B16)

-1

and the standard Gaussian integration formula

F(z)dz n F() (M17)

1 = ---'_z 2 = M +( 

1 7l

-f

where
ZP =ýp = Cos (2p+- I• r (p= 1, 2'..... M+I1) (B 'S 8

A Newton-Raphson iterative scheme was used to find solutions for the a,'s and T, with
convergence specified by a relative change of less than .01% in the values of each of the unknowns

in successive iterations. The physical argument that for a long matrix crack the applied stress a
should approach the steady-state matrix cracking stress amc provides a consistency check on the

accuracy of the numerical solution. It was found that with M between 40 and 60, the consistency

check was always satisfied to within about 0.1%.

APPENDIX C

AUXILIARY PROBLEM FOR afnc
We can obtain an integral equation for the auxiliary problem of Fig. 4 by letting Aa - in

Eq. (B2). The result is
dpx)• 2J] 2 (1-v 2 ) x rA

p(x) =- 2 _x2P(ý)d for a0 <x<*< (CI)
dx cE f2 2

a0

By making the substitutions shown in Eq. (B7), together with
x = a0y (C2)

we obtain

7  q(y) = O - (ri)dr for 1I< y < (C3)

Note (Fig. 4) that under the applied stress a, o(**) = o/(cfS) = £, and the condition for fiber

fracture at the original flaw tip is given by

(C4)
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3
Accordingly, for assigned values of a0 ,- ' the solutions 4(y) of (C3) that satisfy (C4)

provide the associated values of i(fo) = = fmc /(cfS) needed to plot the solid curve of Fig. 8.

The transformation

V =l+ -I (C5)
-1-0

may be introduced into (C3) to map the infinite domain into the interval (- 1, 1). The subsequent
numerical procedure used to calculate If versus N0 , involving expansion of 4 in Chebyshev

polynomials and Newton-Raphson iteration, was basically similar to that outlined in Appendix B.
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Fig. 1. Initial through-the-fibers crack-like flaw.

A f ff f I brIdgingf fibers

A~a

Fii m
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Fig. 2. Matrix crackcing initiated from flaw tips.
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Fig. 3. Applied stress vs. matrix crack growth.
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Fig. 4. Auxiliary problem: fully cracked matrix.
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Fig. 6. Applied stress for various amounts of matrix crack growth.
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Fig. 7. Peak stress during matrix crack growth.
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INUMERICAL SOLUTION

---------.- APPROXIMATE FORMULA

b .4-" ,

.2

0 5 10 15 20 25
3 2q,,,./(cfSa'o)=Ct[oo'T/(RS)]

Fig. 8. Results for Gfmn, fully cracked matrix.

-4

b

1 2 3 4 5 6

A[ 1+2(cts/a)3]'/2

Fig 9. Modified strengthening ratio Od/O0 for various values of oomc. The parameter A is

the modified toughening ratio for small-scale bridging.
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Fig. 10. Modified strengthening ratio ca1/ao) for various values of cfS/io. The parameter A is

the modified toughening ratio for small-scale bridging.
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Fig. 11. Strength ratio cyd(cfS) vs Nofrvros auso nm/O .Tecosatai
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defined in Eq. (11)
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constant at is defined in Eq. (11l)
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MECHANICAL BEHAVIOR OF A CONTINUOUS
FIBER-REINFORCED ALUMINUM MATRIX COMPOSITE

SUBJECTED TO TRANSVERSE AND THERMAL LO)ADING
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ABSTRACT

THE TRANSVERSE properties of an aluminum allos metal matrw composite reinforced b. continuous alumina
fibers have been investigated The composite is subjected to both mechanical and ccchc thermal loading
The results of an experimental program indicate that the shakedoin concept of strucural rncchanice
provides a means of describing the material behavior. When the loading conditions are within the shake-
down region the material final)% responds in an elastic manner after initial plastic response, and for
loading conditions outside the shakedown region the material exhibits a rapid incremental plastic strain
accumulation. The failure strain vanes by an order of magnitude according to the operating conditions
Hence for high mechanical and low thermal loading the failure strain is small, while for low mechanical
and high thermal loading tho ."itre strain is large.

1. I NTRODUCTION

THE POTENTIAL for weight and strength advantages of components made of metal
matrix composites is the consequence of the anisotropic properties of the composite.
That advantage is diminished, or is even lost, for laminates with a less marked
anisotropy. Consequently. if full advantage is to be taken of the dominant strength
characteristics then the fibers should be oriented in the direction of maximum stress
transmission. In this circumstance the transverse properties of the composite are
critical since there must be sufficient strength in the matrix to carry the secondary
stresses applied in the transverse direction.

The transverse properties of a metal matrix composite consisting of an Ai-Li alloy
matrix reinforced with continuous alumina fibers are investigated in this study. An
important characteristic of this material is the combination of a strong bond at the
fiber-matrix interface and a ductile matrix. There is also a large mismatch in the
coefficient of thermal expansion of the fiber and matrix so that fluctuations in oper-
ating temperature induce thermal stresses in the composite. It is the goal of this study
to determine the behavior of the composite when subjected to mechanical and thermal
loading with special attention given to the transverse properties. The properties in the

593
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fiber direction are the sub ' ec. of* another stud% A., a result of this stud% it is possible
to describe the behav ior of* the composite in ternis of the shAkedos" n ~oncept used in
structur~al niechainics. and it is Also possible to des elop a rathei simiple method for
establishing thle constit utise eq uations for use in srmtructUal calculations

T'he composite studied i,, Du Pont's [P1 Al ( n xmiio'i 11 (1 ! 10sis %Ith con! inu1 'us
fibers in a unidirectional laý -Lp I-he fiber, olumec tract ion N~s~sdetermnined to he ý '

Thle [P fiber consist-s of'9( " pol ýcry stalline a-alumnina iAl , A) iI coa3,1ted Nk i th N ih t :jIha t
imprLoLS .he strength of the fiber and aid, the \A-etting b\ the nioltcn metal I he tihers
have a diameter of~approximatels 20) pm. a nmodulus of 345 IN'( (iPa. ai tensile sirencth
of' 1.9 11 GPa f'or 6.4 mim gauge length. and a f'racture ,train of(i 0 -..1 he
matrix material is a 2 \NO, L. Al binar% alloy The lithium promotes the wciting ot
[lhe alumina fibers that f'orms a strone matrix fiber interface and it also raise, the
nmodulus and decreases the dclnsitý of' the aluminum, The composite is fabricated h\
preparing the FP fibers into tapes b\ using, a fugitie binder and the Tapes are
subsequentl\ laid up in a metal mold in the desired oyrientation. Thle binder is burned
awa,. and the mold is vacuu m-i nfiltirated with the nmolten matrix The composite %%as
a~ailable in the form of a plate 1501) '150 . 12.5 mm thick.

The specimen used in the test is show n in Fig. I a). It has a relatisel\ large radius
at the transition f'rom the gripping section to the reduced-gauge section to pros ide a
losk stress concentration and a short gauge length for efficient use of the material. The
specimen was loaded in a servo hsýdraulic machine and heated by means of induction
coils [Fig. IfNb). and the strain was measured w~ith an extensometer with 3 N- gauge
length. The temperature %as measured b% using three type K thermocouples mounted
at the center and at the ends of the gauge section. The center thermocouple controlled
the temperature while the top and bottom thermocouples were used to measure the

(a) (b)

R-40 WO

''0 0 M
L Dr ~ CH MIPS

htiu 1. Jai Specimen geomeir% (bi Lxpenmcntaf seiup.
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variation of temperature along the length of the specimen- The variation of tem-
perature with time and space is shown in Fig. 2. The spatial temperature distribution
is slightly different for the heating and cooling parts of the cycle. It was not possible
to adjust the coil to have a uniform temperature distribution over the whole ccle. It
was therefore adjusted to have a minimal spatial variation over the cycle. A computer
was used to control the tests b. generating command signals for load and temperature,
and to perform data acquisition.

The tests reported in this study involved a constant transverse stress in combination
with cycles of temperature with heating rates of 0.7 Cs that give cycle times of
approximately 150 s. Because of the limited availability of the composite only one
specimen was used for each transverse stress level. The specimen was loaded and
subjected to cyclic temperature and the ratcheting rate was measured when the stead. -
state condition was reached. The cyclic temperature range was then increased and the
next rate was measured on reaching the next steady-state condition. The temperature
and strain variation- were continuously recorded. Examples of recorded strain in the
direction of the applied stress are shown in Fig. 3.

3. EXPERIMENTAL OBSERVATIONS

Transverse stress-strain curves at room temperature are shown in Fig. 4. from
which a deviation from linearity is observed to occur at 75 MPa. The ultimate strength
is 200 MPa and the strain to fracture is 0.8%. The ultimate strength is about 50%
higher than the ultimate matrix strength while the failure strain of 0.8% is only 3%
of the 30% failure strain of the matrix (SAKUI and TAMURA. 1969).

Representative results for operating conditions in excess of shakedown are given
in Fig. 3(a) for a low transverse stress and in Fig. 3(b) for a high transverse stress. In
both cases transient behavior is followed by a cyclic response for which there is an
increment of strain after each cycle, i.e. ratcheting occurs in both examples. For the
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FIG. 6. Ratcheting rate as a function of transverse ;tress and temperature range. The rate of 10 4 is very

close to the shakedown limit,

low transverse stress the transient portion is completed after one cycle [Fig. 3(a)]
whereas in the case of t1 e high load the transient behavior continues for 40 cycles
before a steady-state condition is reached [Fig. 3(b)].

Similar tests were performed at different values of constant transverse stress and
temperature cycles. In Fig. 5. the steady-state strain range Aa recorded over a cycle
of temperature is plotted as a function of the temperature range AT for different
values of the transverse stress ar. It may be inferred from this plot that the cyclic
strain is independent of the level of the transverse stress and is lineatly dependen: on
the temperature range AT. Some of the samples have a higher strain range close to
fracture.

Contours of constant values of steady-state accumulation rate of efEtdN, where &,
is the plastic ratchet strain and N the cycle number, are plotted in Fig. 6 as a function
of the thermal and mechanical loading. There are combinations of aT and AT for
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which no ratcheting occurs and after an initial (transient) response the cýclic material
behavior is elastic. This condition is indicated in Fig. 6 as the shakedowkn condition
(ýI:r •N < 10 '). When the operating conditions exceed the shakedown condition
ratcheting occurs at rates indicated in Figs 6 and 7.

The contours of constant ratchet strain rate plotted in Fig. 6 are generall\. parallel
to the shakedown surface. This observation suggests that the force /] which drix es the
ratchet strain rate is given by

AT 17T_+ -_. (I)
T, a,

where T, and a, are the ordinates defining the shakedown condition. The relationship

ofdv,. dA' has the form

dr., P (2)dN

where .f(fl) has the form given in Fig. 7. The relationship is exponentially dependent

on Pl for the present range of fP and can be written as

f(fl) = exp (9.5 x 102#) - I

The failure strain is dependent on the operating condition as indicated in Fig. 8.
The failure strain was 0.8% for high stress and low thermal load whereas for a low
transverse stress of 30 MPa the failure strain reaches 12%. Microscopic observations
of specimens subjected to low transverse loading and with large failure strains [Fig.
9(a)] showed distributed damage in the form of small cracks over the whole gauge
section. The cracks are initiated from areas with poor matrix infiltration and locations
with closely spaced fibers. The macroscopic fracture surface is wavy. A high-
magnification viev [Fig. 9(b)] indicates a ductile fracture in the matrix with extremely
oblong voids. It appears that the initial fracture is close to the fiber- matrix interface
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on planes perpendicular to the loading direction and that the final fracture consist,
of a ductile fracture in the remaining matrix ligaments between the fiber,.

The fracture for high transxerse loading and small failure strain [Fig- 1l(a)) is
localized to one narrow band oriented approxitratel% 45 to the loading direction.
The fracture surface [Fig. 10(b)] also indicates that the fracture is governed b, a
ductile matrix failure. However. the fracture does not approach the fiber -matrix
interface as for the low transverse loading and .t appears as if the whole load carrying
capacity of the matrix has been lost at the same time. These observations suggest that
the failure mechanism in the matrix is associated with void growth.

4. COMPUTATIONAL STUDIES

By using the theory of homogenization in conjunction with finite-element pro-
cedures an attempt is made to determine the mechanics that governs the behavior of
the composite in terms of the properties of the fiber and the matrix.

The present composite consists of long fibers in a unidirectional lay up that are
randomly distributed in the transverse plane. In the model to be analyzed the fibers
are assumed to be long parallel cylinders arranged in a hexagonal array [Fig. II (a)].
This periodical array has the mechanical properties with the closest symmetries to a
composite with randomly distributed fibers. Both systems are transversely isotropic
when the constitutents are linear elastic but the hexagonal array has a weak deviation
from transverse isotropy when the matrix exhibits a nonlinear stress strain relation
(JANSSON, 1990a), The deviation is most pronounced for a perfectly-plastic matrix.
However, reasonable results can be expected if effective properties are calculated for
loadings that do not permit slip planes unconstrained b, the fibers.

The governing boundary value problem for the effective properties of the unit cell
is two-dimensional and has been solved with the finite element method by using
ABACUS (1988). A 10-node biquadratic quadrilateral generalized plane strain
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(a) __b)7

2b
-At

h(.{ I I tal f-laet,id aj~rra'% %,%tth unit cell mndi,:ated (b) Fin•ite eemeni Mesh

element with reduced integraton \Nas used to avoid locking. The considered loadjIng
of the unit cell [Fig. lI fa)] i,, symmetric 6% ith respect to tilei )- and yi-axe.'. This
implies that only an eighth of the indicated unit cell in Yig. I lI(a) need he ana!\ zed.
The mesh showvn in F~ig. I I (h) is sub~ject to the fol)low,\ing in-plane boundar.\ conditions
for the tractions T, ý:nd displacements u, on the houndar\ S:

T,\. h., +c 07, _ . - •c<

U.v'0 O' )cntn so f ý TdS-c T, dS= 0.

U,0"= ) ( . T, dS=- .,

where <,7, > is the average st ress and <E, is the average strain in the I1-direction. The
generalized plane strain condition gives

,=constant so i T3 dS =0.

A detailed description of the derivation of the boundary conditions for different
loadings is given in JANýON (1990a).

The elastic properties ol" fiber and matrix are not greatly affected by the history of
processing and heat treatment of the composite so that it is possible to usL. data from
tiie literature. However, the flow properties of" the AlI-Li matrix alloy are strongly
dependent on tlhe histories of heat treatment and cold-working (Sl ARKr• CI al.. 1981
SAKui and TAMURA, 1969). Details of the prG,,:essing of the composite and of aný
post-heat treatments are not available. Hence. the exact state of the matrix 'is not
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known and it is not possible to determinC the tfos properties of the matrix from the

literature The onl\ meanS o0 CeTimating the t1o0 properties of the matrix ot the
composite is to selekct matrix properties so that the calculated responc fit, the exper-
imental stress strain cur\e tor the composite This procedure has been performed b,
JANsso', (1990b). ,, ho demonstrated that the matrix propertie, obtained from one
,tress state could be used to predict accurately stres-,s strain relation,,ship, ot other
loading states The iitial .ield stress of the matrix Aas determined to bch 4 %1 Paw sith
a hardening exponent n =- 3 (Vig 4) for isotropic hardening. The isotropi. hardening
cannot describe the matrix hcha,6tor Ahen it is subjected to cschc loading condi.,,,
and nonlinear kinematic hardening Aould be more appropriate [he tests required to
determine the clchc properties of the matrix have not been performed due to lack of
material. Hio%%eser. obsersation, indicate that the initial \ield stres, i, close to the
cyclic \ield stress of the composite. The matrix sas therelore modeled as an elastic
perfectly -plastic material In the calculations the fibers are assumed to be linear elastic
and the matrix behavior is modelled wkith a small-strain J, perfectls -plastic theory
using the properties ginen in Table 1. It is therefore not expected that the calculation"
can b,-- used to provide accurate predictions but should be suflicientI, reliable to
proside insight into the material behavior.

The calculated transserse stress strain curve (Fig. 4) for an elastic perfectfl-plastic
matrix agrees \xell %kith the experimental curve up to i = 0. P',,. The calculated limit
load is much lower than the observed load because the matrix hardening has not been
included It can be noted that the increase in limit load is 30'. for the perfectls-plastic
matrix. A substantial portion of the increase comes from the plane strain condition
for the matrix in the fiber direction which is 2 ,. 3 and the remainder represents
constraint. The calculated stratn ranges agree well with the measured values (Fig. 5).

The calculated response for constant stress and cyclic temperature (Fig. 12la) and
(b)] exhibit the same features as the experiments [Fig. 3(a! and (b)] with a short
transition period for low transverse stress and a long transition penod for high
transverse stress.

In performing the elastic- plastic calculation it was possible to determine initial yield
surface for the case of no residual stresses and shakedown boundary given in Fig. 13.
These have been expressed in terms of the dimensionless loadings EA, AT a, and
CT'r -. It was found for an exponentially temperature-dependent yield stress that the
shakedown boundary is given by the result for a temperature-independent yield stress
to a good approximation by replacing the yield stress with the average yield stress for
the temperature-dependent case. The initial yield surface is dependent on the residual
stress state induced during fabrication and cannot be determined without knowing

TABLtE . Material constants used in computations
(c( = 55%)

E ar ,

(GPa) v C) NMPa)

Fiber 345 0.26 8.6x 10-
Matnx 70 0.32 24 x 10 95
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the history of the composite. The shakedown boundary is not dependent on the
history. The ratchet rates for different loading conditions fall on the master curve
(Fig. 14) when plotted as a function of AZE a;aj,. where Acr is the thermal strain
increment in excess of the shakedown condition and 6'iGL is the current transverse
stress over the limit stress.

It was observed earlier that the failure strain was found to be strongly dependent
on the transverse stress (Fig. 8). It is known that ductility is usually strongly dependent
on the void growth factor a,,,id for a ductile fracture, where o, is the sum of the
principal stresses and 6 represents the effective stress. The void growth factor in the
matrix attains its highest value close to the fiber-matrix interface (JANSSON. 1990b).
The evolution of the void growth factor with the highest peak value is plotted in Fig.
15 as a function of accumulated transverse strain for different loadings. For transverse
tension it increases from 3 at the initial linear elastic response to 6 at the observed
fracture strain. Pure heating causes a hydrostatic pressure in the matrix. For transverse
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loading combined with thermal cycling o•!O decreases during the heating period after

the initial transverse loading and increases during the subsequent cooling period. The

calculations indicate that the peak value of 0r&i6 decreases initially for low values of

transverse stress (Fig. 16). However, as strain is accumulated o•Li increases and

reaches a steady-state condition with an increase of a•/0 for each cycle.

The computations indicate that the peak value in a cycle of a•/i for a given

accumulated transverse strain is strongly dependent on the magnitude of the transverse

stress (Fig. 16). A low transverse stress requires more strain than a high transverse

stress to build up the same constraint.
In Fig. 17 the equivalent plastic strain at the location with the highest value of a./k

is plotted against the accumulated transverse strain for different loadings. From Fig.
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17 it can be deduced that the equivalent strain is linearly related to the transverse
strain and is relatively independent of the transverse loading.

5. ANALYSIS OF THE EXPERIMENTAL AND COMPUTATIONAL STUDIES

The experiments and computations indicate that after a transient response the
material reaches a steady-state condition. If the operating point lies within the shake-
down condition the final behavior of the composite is elastic. When the shakedown
condition is exceeded steady-state ratcheting occurs. The experimental contours of
constant ratcheting rates are found to be parallel to the surface defining the shakedown
surface (Fig. 6). Computational studies based on the assumption that the matrix is
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elastic-perfectly-plastic also predict shakedown behavior but the shape of the pre-
dicted shakedown surface is slightly convex while the experimental results fall on a
straight line (Fig. 13). The computations give a close prediction of the shakedown
condition for low to intermediate transverse loading. The elastic-perfectly-plastic
matrix model underestimates the limit strength of the composite and the shakedown
region for high transverse loadings. Results for an approximate model that provides
insight to the shakedown mechanisms in the composite are also given in Fig. 13. The
model is based on constant stress fields in fiber and matrix, and is given in the
Appendix. It underestimates the stress concentration for thermal loading and the limit
load of the composite. The stress concentration for thermal loading can be determined
accurately by using the elastic solution for a concentric cylinder model.

The calculations and general results for shakedown conditions [cf. PONTrER and
COCKS (1982)], indicate that the shakedown condition should intercept the stress axis
at the limit stress. However, the experimental values intercept at a slightly lower stress
(170 MPa) compared to the measured limit stress of 200 MPa. This discrepancy
may be caused by the simple constitutive equations used in the calculations. The
experiments intercept the temperature axis at 130'C and the calculations predict
I 10C. This is close in view of the uncertainty of CTEs of fiber and matrix and yield
stress. This indicates that the transverse strength is weakened when the composite is
subjected to cyclic loading conditions.

It is observed experimentally that the ratchet strain rate has the form
dE,
d-N- = f(fl)' (3)

where # is proportional to the distance outside the shakedown surface and f(fi) is
defined in Fig. 7. The simplified analysis performed in the Appendix for the Tresca
yield condition gives similar results and predicts the same relative change in ratcheting
rate for operating points far in excess of the shakedown condition. However, the
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computer calculations predict a more complex structure of the expression for the
ratcheting rate with the form

d 0). 141

dA' a, t

where fl is the thermal strain in excess of the shakedown condition and is then
also proportional to the distance outside the shakedown surface in the temperature
direction.

It can be deduced from Fig. 14 that /(fl) is a nonlinear function otfl for operating
conditions close to the shakedown condition that is consistent with the experimental
observations. For operating conditions far in excess of the shakedown condition it is
linearly dependent on f# and is consistent with the model in the Appendix for the
Mises yield condition.

The approximate model and the calculations give the same trend when the cyclic
plastic region extends over the whole unit cell.

A lower bound on the ratchet strain per cycle has been determined b., PONTER and
COCKS (1982) for Bree-like problems where the ratchet strain is uniform through the
body. The lower bound applies for loading conditions which just exceed the shake-
down condition. The lower bound is given by

AN

where the increment of elastic strain is given as

Ar, = -- - (6)
E

where Aa is the stress increment between the L -rent state and the shakedown con-
dition (Fig. 13) and E is the modulus in the transverse direction. The thermal strain
can be identified for the present problem as

AeT = AaAaT, (7)

where AM is the difference in coefficient of thermal expansion between fiber and matrix
and AT is the temperature increment in excess of the shakedown condition. The
experiments exhibit ratcheting rates that are lower than the lower bound (5). For
operating conditions close to shakedown the cyclic plastic zones do not extend over
a large portion of the matrix and the bound is not applicable. For operating conditions
far in excess of shakedown the cyclic zone extends over a large portion of the matrix
and the bound gives a better estimate for these conditions.

The failure strain can differ by over an order of magnitude depending on the
operating condition. This behavior which is illustrated in Fig. 8 has been observed
previously by COTrRELL (1964). It is known for AI-Li (PILLING and RIDLEY. 1986)
that ductile failure is the result of void nucleation and growth from small particles.
In the studies of HANCOCK and MACKENZIE (1976) it is suggested that, when failure
is the result of void nucleation and growth, the effective strain Cf at failure for multiaxial
state of stress has the form
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r, = 1.65,exp -c. xp

where r,, is the uniaxial failure strain. The failure strain for this matri% in uniaxial
tension is reported to be approximatelk 0.3 (SAKUI and TAMtIRA. 1969) and JA%'ss\)N
! 1990a) has reported in tests on the composite under consideration that the strain for
in-plane shear parallel t i the tibers is 0.2. From the computer studies it has been
determined that transverse loading alone introduces a multiaxial stress state for " hich
a, d -- 6.0 over a large region of the matrix at fracture. This is not greatl different
from the values present in the classical Prandtl punch problem. For a history-depen-
dent stress state the damage equation of J8) is equivalent to

exp I E= 1,65r,. (9)

Applying formula (9) for the failure strain and using the data in Figs 16 and 17
gives the failure strain for transverse loading:

C', = 0.9%.

which compares quite well with the observed failure strain of 0.8% in the transverse
direction. Applying (9) for the thermomechanical loading histories gives the predicted
failure strain is shown in Fig. 8. The observed failure strain is higher than that
predicted by the model for low transverse stress. However, the model gives the right
trend but clearly requires modification.

In the model it is assumed that catastrophic failure coincides with the condition
when local failure occurs. This gives an accurate prediction when the transverse load
is close to the limit load. when a small defect is sufficient to trigger failure.

In the case of low transverse loading the loss of load carrying capacity occurs in a
small volume of matrix material and may not be sufficient to cause global fracture.
The damage has to be extended over a larger volume and the calculations give the
strain for the first matrix failure and not the strain for which the damage causes global
instability. This may explain the observed difference in failure strains for low and high
transverse loading. The analysis required to illustrate this failure mechanism would
require calculations which follow the growth of damage throughout the matrix and
it has not yet been attempted.

6. CONCLUSIONS

When the metal matrix composite was subjected to a constant transverse stress and
cyclic temperature it is found that after an initial transient response the material
reaches a steady-state condition.

For loading conditions which fall within a shakedown condition the increment of
strain over a cycle is zero. However, if the shakedown condition is exceeded there is
an increment of irreversible strain after each cycle of temperature. The shakedown
condition is defined by the relation
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.(a,.AT) . + -I =0.
A, T,

where a, = 1.3a, and AT, is defined by

E,.a A,2 AT..... .. . = 1.4 .
a,

Predictions of finite element computations agree reasonable well with the experimental
observations of the shakedown surface. The differences exist presumabl- because of
the deficiencies in the constitutive equations of the matrix which in the calculations
are assumed to be of a very simple form.

The increment of strain per cycle is also found to depend on the function which
defines the shakedown surface so that

dN•

where # is defined as

fP = 9(at, AT).

The transverse failure strain varies substantially with operating conditions. The
failurf :rain is 0.08% when transverse stress is the only loading, and it increases to
12% m hen the transverse stress is 30 MPa and the thermal loading is sufficiently high
to cause ratcheting.
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APPENDIX:
DETERMINATION OF SHAKEDOWN SURFACE AND RATCHET STRAINS

A simple calculation has been performed which provides physical insight and some limited
quantitative information.

The composite consists of an elastic-perfectly-plastic metal matrix with modulus E, and
yield stress t,. The fiber with modulus E, is assumed to remain elastic. It is also assumed that
the stresses are constant in the matrix and fiber, and that the fiber is so stiff that the longitudinal
strain is given by the thermal expansion of the fiber. This is an approximation which satisfies
equilibrium and consequently will tend to give lower bounds on stiffness, limit load and
shakedown conditions.

Since the fiber modulus E1 is 5 times higher than the matrix modulus E,, the elastic matrix
response is readily calculated using the condition

I" Vma 1
3 =E,. L - +Aa AT= 0. (A])

E., E,.

where a. is the stress corresponding to the transverse loading and a, is the stress in the fiber
direction acting on the matrix. Hence, for heating

or = - E4,A* AT, + v,,a. (A2)

Using the Tresca yield condition plastic yielding occurs when

03-o1 = -C,. (A3)

if a 3 < a2. Eliminating a 3 gives

ai(l --v.) = a,.-EAcxAT.. (A4)

Plastic deformation occurs if temperature is increased by a further amount. AT,. Since AE = 0,

AeP+AiAT 2•= 0 (A5)

and from the normality rule At's - Aezl the plastic strain c¶ is given by

A4 = AaAT2 . (A6)

Now when the temperature is decreased by an amount AT). elastic unloading takes place until
the yield condition a3 -6 2 = a, is reached, Since a2 = 0,

a = -oL +or+E,A+ AT =o, (A7)

from which the shakedown condition
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can he deduced. The transverse load is also restricted bý the limit load condition

If the shakedown condition is exceeded b% applying an additional temperature decrease AT,
then plastic increments of deformation occur:

Azl = A):AT4 _ (Al10

and normalit% givcs
Ar, (A -I} IAI

In continued cycling no incremental accumulation of strain can occur in the third direction

because the fiber is elastic. For steads-state conditions

AT. -AT 4 . WA2)

Let the total temperature difference be AT for steads-state conditions. Hence.

AT= AT-+AT,. (A13)

whcre AT, is the value lor shakedown. The expression for the ratchet strain increment in the
I-direction is then

Ai., E~,,AAT ,
E_- A).AT+ -2. (A14)

(71 E- (7

This - rement can also be expressed in terms of the shakedown condition. Defining the
function by

y,(AT,~ o oI)E, AT +,+,A , .... a, (AI15)

gives the condition for shakedown
g,q(AT.a,) •< 0. (A 16)

Thc ...tchet increment of strain when the shakedown condition is exceeded is given by

Ac' -,Q(AT, a,) = A2T'. (AI7a. b)

where AT' is the temperature change in excess of the shakedown condition. The same model
for a Mises yield condition gives the shakedown boundary

E A-% A
g2 (A ~F4- 3=L )I__ (A 18)

with the ratchet increment of strain

3 ' . I - 3 .... acAT' (A19a. b)

we ( 4 E,,_

where a, (2,\ 3I)C,.
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ABSTRACT

The anisorropic mechanical behavior of a continuous fiber reinforced Ti alloy matrix

composite which possesses a weak fiber matrix interface is modeled numerically. Effects of

interface properties and residual stresses incurred during the fabrication are addressed in derail.

The computational modeling is guided by comparison with experimental data. The study provides

an understanding which will be used to model the multiaxial behavior of weakly bonded

composites and to provide a tool for predicting the failure of composite structures.

1. INTRODUCTION

Continuous fiber reinforced metal matrix composites (MMC's) are attractive because of

excellent longitudinal properties and relatively high transverse strength and stiffness. The MMC's

can be utilized effectively when the loading is predominantly uniaxial with primary stresses in

the longitudinal direction and only secondary stresses in transverse directions. However, many

structural components and joints are subjected to complex multiaxial stress states. The efficient

use of composite materials, in such situations requires an understanding of the overall anisotropic

mechanical behavior of the MMC systems. MMC's are presently available in restricted quantities

and shapes which limit the data that can be produced experimentally. This implies that for the

present, numerical models are useful supplements and provide estimates of mechanical responses

that cannot be determined experimentally. The models also provide insight which helps establish

the failure conditions of the composite.

Experimental and numerical procedures have been applied in a previous study (Jansson,



1991) to establish the anisorropic behavior of an FP/AI system which features a strong interface.

The present study focuses on the anisotropic mechanical behavior of SCS6/Ti 15-3 which is a

candidate for moderately high temperature application. The composite features a weak interface

designed to maintain the fiber strength in the fabricated composite.

Single deformation modes such as the transverse tensile behavior of the similar system

SCS6,Ti-6V-4Al has been studied by Nimmer et al (1990, 1991). Experiments (Jansson et al,

1991) established that the fiber matrix interface plays a major role on the transverse and in-plane

shear behavior of the composite. For a system featuring a perfect bond, the constraints induced

by the fibers cause the transverse strength to be higher than the matrix strength. The use of a

weak interface in the SCS6/ Ti 15-3 system results in a transverse strength that is substantially

lower that the matrix strength.

A deta•led micro-mechanical model is develoned that determines the influence of weak

interface, residual stresses from fabrication and the matrix plasticity. The model is verified by

comparing the computations with experimental data obtained from longitudinal tension, transverse

tension and in-plane shear tests performed on specimens n~uiufactured from the composite plate.

The different failure modes are also investigated so that failure criteria can be established.

2.COMPOSITE MATERIAL

The material used in this study is SCS6/Ti 15-3 made by Textron. It consists of SIC fibers

2



"with a carbon and a SiC coating in a uniaxial lay-up. The fiber volume fraction is 35% and the

average fiber diameter 140 mm. The matrix is a P-Ti alloy, Ti-15V-3Cr-3A1- 3Sn. The composite

is fabricated by vacuum hot pressing a fiber-matrix foil lay-up. Detailed information uf the

processing is not available, but the composite is consolidated at approximately 900 C. In the

subsequent cool down, the mismatch in coefficients of thermal expansion of fibers and the matrix

causes residual stresses.

Tensile properties of the :natrix were obtained from tests on matrix foil extracted from

the composite. The fiber modulus was determined from the average of SO bend tests (Jansson et

al, 1991). The remaining properties have been extracted from the literaturm and the elastic

properties are summarized in Table 1. The matrix and fiber stress-strain curves are shown In

Fig. 1.

The longitudinal and transverse behavior (Jansson et al, 1991) were determine(' using dog-

bone specimens for longitudinal and transverse tension. Specimens of the Iosipescu type were

used to determine the in-plane shear response.

3. MICRO MECHANICAL STUDY

Numerical simulations were performed using homogen,.:ation techniques in conjunction

with the general purpose finite element package ABAQUS (1988). In the computations the fibers

are assumed to be long parallel cylinders arranged in a hexagonal array (Fig. 3). This is the

3



simplest periodic array for which the linear elastic propemes are transversely isotropic. The

nonlinear response of the array has a slight deviaton from transverse isotrop,, It %,as

demonstrated by Jansson (1991) that the array can be used to predict the properties of a

transversely isotropic system with randomly distribute fibers, if care is exercised vwhen selecting

the loading directions. For a system with randomly distributed fibers the matrix area frac;,jii on

any plane cut through the composite is equal to the matrix volume fraction, cf Underwood

(1970). However the matrix area fraction is strongly dependent on the orientation and locaton

for a periodic array. The present system has some form of arrangement resulting from the fiber-

foil consolidation process, but is difficult to identify any definite simple array type, since the

distribution pattern differs from point to point. However it was found that an important feature

of the weakly bonded systems for transverse tension is the matrix area fraction on the weakest

planes. It was determined to be 40 %, which is substantially lower than the value of 65 % for

randomly distributed fibers. The corresponding value for the hexagonal array is 38 % when

loaded in the 1 -direction, Fig. 2. The hexagonal array was selected in this case because it models

the correct volume fraction and matrix area fraction on the weak planes that dictates the

transverse strength.

In the homogenization technique, cf (Jansson. 1992), the displacement field is assumed

to have the form -0
ui S +<Eg?"Cj U (

where u,0 is an arbitrary constant displacement, <F-ij> is the average strain in the composite and

u'P is an unknown displacement fie!d which is periodic on the unit cell. The average stress <a,?
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can be determined from the traction T, on surface S on the unit ceU by use of the mean stress

theorem as

<O? f T, x fs (2)
a

All the loading cases considered are symmetric with respect to the x, and x, axes in Fig.

2 and the displacement field has an inversion symmetry about the point (x,=aý3/2, x2=a12). This

implies that only the unit cell A-B-C-D in Fig. 2 need be analyzed. Ten node quadratic

generalized plane strain elements with reducedi integration were used to model the longitudinal

and transverse behavior. The boundary conditions at the interface were selected to satisfy the

interface bond characteristics. A fully bonded interface was modeled by enforcement of

displacement continuity across the interface. The weak interface was modeled by a 3-node sliding

interface element available in ABAQUS. The interface is assumed to debond when the normal

stresses become tensile and the interface is thereafter traction free. Normal compressive stresses

can be accompanied by shear stresses given by Coulomb's law of friction. Restrictions of the

code meant that the modeling of the in-plane shear response required a 3-dimensional analysis

using a 20 node brick element. Boundary conditions which ensured generalized plane strain

behavior and the symmetries on the unit cell were imposed. These conditions reduce the degrees

of freedom in the model substantially and results in reasonable solution times. Numerical

difficulties were encountered when calculating residual stresses using available 3-dimensional

interface elements. This difficulty was overcome by modeling the interface as a thin

elastic-perfectly plastic solid layer whose yield strength was selected to be equal to the sliding

5



resistance of the interface.

The fibers were assumed to be isotropic and linear elastic and the matrx is assumed to

be elastic-plastic with isotropic hardening. The influence of different temperature dependence of

moduli and matrix yield strength were studied. It was found that the simplified temperature

dependence of the yield stress given in Fig. 3 together with temperature independent moduli gave

the same residual stress distribution as more refined models. The elastic properties of fiber and

matrix given in Table 1 and the temperature dependence of the matrix yield strength given in Fig.

3 were used in the computations.

3.1 Residual Stresses After Fabrication

The residual stresses following fabrication are likely to influence the mechanical behavior

of weakly bonded composites. When calculating the residual stress fields the composite is

assumed to be stress free at the consolidation temperature before it is subsequently cooled down

to room temperature. The exact details of the processing are unknown and consequently no time-

dependent viscous behavior was included in the analysis. The residual stress distribution in the

matrix is shown in Fig. 4 for the consolidation temperature 900 C. The residual stress in the fiber

consists of a compressive axial stress of 720 MPa and almost uniform compressive radial and

hoop stresses of 220 MPa. The residual hoop and radial stresses in the matrix vary substantially.

The highest magnitudes are found near the interface with a compressive radial stress of 200 MPa

and a tensile hoop stress of 500 MPa. The axial stress is tensile and is almost constant, varying

between 390 and 420 MPa. No matrix cracking was observed in the as received composite
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(Jansson et al, 1990) which suggests that the matrix toughness and ductility are sufficiently high

to sustain the tensile stresses induced during processing.

3.2 Longitudinal Tension

The computed stress-strain curves following the different assumed consolidation

temperatures of 0, 600 and 900 C are shown in Fig. 5. The difference in response for different

consolidation temperatures is modest which indicates that the magnitude of residual stress has

only a weak effect on the longitudinal behavior. The calculated longitudinal modulus E3 and

Poisson's ratio v,1 are close to the experimental values given in Table 2. A slight sample to

sample variation in the longitudinal tensile response was obse:ved in experiments, as shown in

Fig. 5. The variation is equivalent to a variation ii, the consolidation temperatures of 600 C. This

is unlikely and the observed variation is most likely caused by handling of the panels after

fabrication.

Since the longitudinal response is only weakly affected by the constraint in the transverse

direction the longitudinal stress strain relationship can be estimated closely using the simple

parallel bar model to give

a•33 ,-.1¢tF33 + (I _]/) a( .(F-33 + ,. 'M ( rnt (3)

where, f is the volume fraction, E, is the fiber modulus, E. is the matrix modulus, a,, is the

longitudinal residual stress in the matrix after consolidation and (s. is the longitudinal stress in
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the matrix. This relation agrees well with the corresponding numerical calculauons when the

longitudinal residual stress used is that determined by computation.

The calculated transverse contractions following consolidation temperatures of 0 and 900

C are compared with the experimental data in Fig. 6. The experimental and calculated curves

exhibit the same behavior with an initial linear response followed by increased contraction after

matrix yielding. The difference in the calculated responses for the two consolidation temperatures

is modest and is of the same order as the sample to sample variation.

3.3 Transverse Tension

The effect of interface bond conditions on the transverse tensile behavior was first

investigated by computing responses for an initially stress free state. Calculations were performed

for a fully bonded and for a weak frictionless interface. As illustrated in Fig. 7a, the stress strain

curve for the fully bonded interface has an initial transverse elastic modulus of 167 GPa and a

limit strength of 1195 MPa. These values are higher than the experimentally observed values of

129 GPa and 420 MPa respectively. For a weak frictionless interface the calculated elastic

modulus is 48 GPa and the limit strength 380 MPa. For this case the predicted elastic modulus

is much lower than the experimental value, while the limit strength is in close agreement with

experiment.

When a residual stress state corresponding to the consolidation temperature of 900 C is

included in the analysis for the weakly bonded interface, it was found that the elastic properties,
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Table 2, and the strength agree very well with experiment. The influence of the coefficient of

friction at the interface on the stress-strain relationship is negligible as is shown in Fig. 7b for

the values of l.i = 0 and 0.8 . The calculations predict that debond initiates when a,,=140 MPa

at the pole of the fiber and the angle of debond increases rapidly with applied stress until it

subtends an angle of 90°. Matrix yielding was predicted to occur in a small confined region on

first loading but the effect of plasticity on the transverse stress-strain behavior is not noticeable

until after debond. This illustrated in Fig. 7b where the stress strain ctrve for a linear elastic

matrix shows the same response up to debond and the non-linearity caused by plasticity is only

evident after the initiation of debond.

The presence of the weak interface reduces the transverse strength of the composite to

approximately 40% of the matrix strength. A limit load calculation, based on a constant tensile

stress in the ligament, gives the limit strength (Jansson et &l, 1991) as

71- 2--Afmo rUm (4)F3

where A.. is the matrix area fraction and o,, is the matrix strength. The timit load calculated

using eqn. (4) is 420 MPa which agrees well with experimental and computational values.

The measured contraction in the unloaded transverse direction for transverse loading is

shown in Fig. 8. The initial linear response is closely given by a linear elastic calculation based

on a value of g. = 0.8 at the interface and a residual stress state sufficiently high to maintain

9



continuity at the inter-face. Following the initial linear response, when debond occurs there is

substantial strain increment in :he loaded direction. The total strain just after debond is closely

given by a calculation for a fully &,bonded interface with a linear elastic matrix. For higher stress

the contraction increases as the region of plastic deformation increases in the matrix. The slope

then follows the calculation for a fully plastic matrix and a debonded interface. The full

simulation following consolidation temperature of 900 C has all the features of the observed

deformation but slightly overestimates the contraction.

The longitudinal contraction resulting from the transverse loading is shown in Fig. 9. The

initial linear response and the limit behavior are closely modelled using a consolidation

temperature of 900 C and a sliding interface. While a coefficient of friction g= 0.8 fits the

experiments most closely the sliding resistance has modest influence on the response

3.4 In Plane Shear

Experimental results are available for the Iosipescu specimen for two fiber orientations

(Jansson et al, 1991). In one set of experiments the fibers are orientated in the direction of the

notches, Fig. 10a, and is referred to as longitudinal loading. The other case when the fibers are

orientated perpendicular to the notches, Fig. 10b is referred to as transverse loading. It was

observed experimentally that the initial elastic moduli are close for the two orientations but the

limit strength for transverse loading at 400 MPa was approximately 40% higher than the value

of 280 MPa observed for longitudinal loading. In longitudinal loading the fibers are orientated

such that the global stress field is constant over a long segment of the matrix orientated in the
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fibers direction. This condition permits highly concentrated bands of shear to develop in the

matrix along the fibers at the weakest plane. In the case of transverse loading only a short

segment of the matrix along the fiber directions is subjected to the higher stress in the gauge

section. T'is effect suppresses the development of bands of concentrated shear since the stresses

decrease with increasing distance from the gauge section. Consequently the limit strength is

higher for transverse loading compared to longitudinal loading. No such dependence on fiber

orientation was observed (Jansson, 1991) for a system that has a strong interface and a smaller

fiber diameter.

The computed and experimental shear stress-strain curves for longitudinal loading are

shown in Figs. 10a. The computations for a fully bonded interface predict an initial elastic

response which agrees with experiment, but the final limit strength is substantially higher than

the experimental value. A calculation based on an interface yield strength of 185 MPa exhibits

an initial non-linear response that agrees with experiment but the predicted limit strength is

higher than the experimental value. The correct limit strength is given by a computation for

which the interface yield strength is 115 MPa. Hence, it might be inferred that the interface is

initially in full contact. Sliding first develops when the shear stress at the interface is 185 MPa

and the sliding stress is subsequently reduced during the slip to a saturation value of 115 MPa.

The initial linear elastic response for transverse loading, Fig. 10b, is identical to the

response for longitudinal loading. This suggests that the calculations based on the assumption that

the local displacement field consists of linear and periodic components, eqn. (1), also predict the
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correct linear elastic response for transverse loading. However the linit strength is higher for

transverse loading, Fig. 10b, than the longitudinal loading, Fig. 10a. This implies that the

calculations based on egn. (1) underestimate the limit strength for transverse loading. As

mentioned earlier, the plastic deformation in the matrix is very constrained for this loading and

the assumption of a displacement field with linear and periodic, eqn. 1, components fails to pick

up this feature.

To simulate this constraint the deformation field in the elastic fiber was still assumed to

have linear and periodical components. However the deformation field in the matrix was assumed

to have only linear components, to be given by,

0 o (5)
U3 U 3 u +<ýYx13>

This formulation suppresses the development of regions with high concentrations of shear.

The calculated responses assuming the same interface characteristics as those assumed for

longitudinal loading are shown in Fig. 10b. It can observed that use of the same interfacial shear

strength as that for longitudinal loading predicts the correct limit behavior for transverse loading.

The initial shear modulus before debond and limit strengths for calculations based on an interface

shear stress of 115 MPa are listed in Table 2 for the two loading cases.

A simple estimate of the limit strength for longitudinal loading is given by considering

a deformation that is given by a slip in the matrix on the surface x, = 0 and at the fiber matrix

interfaces. This gives
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i 7r 1"TL-¶ *--(1-Af.)+--acLnffm (6)

where 'rL is the limiting strength of 'r 3, "ry' is the shear strength of the interface, aL is the limit

stress of the matrix under uniaxial tension and At is the matrix area fraction of the weakest

plane. For the system under consideration Af, --0.4 and use of eqn. (6) with the experimental

limit strength TL =300 MPa gives an interface shear strength Ty' =95 MPa, which is close to the

computed value of 115 MPa.

The limit strength for the transverse loading can be estimated by assuming that the

deformation in the matrix is linear and as given by eqn. (5). This deformation causes a plastic

deformation throughout the matrix with slip at the interface. A work balance gives

3 it

where f is the fiber volume fraction. This expression is a modified version of the upper bound

given by Majumdar and Mclaughlin (1973) for a strong interface. Using the experimental strength

tL = 400 MPa in this relation gives an interfacial shear strength of 'Z,' = 100 MPa, which is

consistent with the value of 115 MPa determined from the computations.
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3.5 Transverse Shear

While no experimental results are available for this form of loading, the calculations were

performed to provide a more complete understanding of the anisotropic behavior of the material.

Shear loading -r in the transverse plane is represented by the principal stress state shown in Fig.

11. Two loading conditions have been investigated: one loading defined by , I= -a 22 = -t and

the other by - all = a22 = x , where t > 0. Computed shear stress strain curves for a fully

bonded and a frictionless interface following a consolidation temperature of 900 C are shown in

the Figs. 1 la and 1 lb. For the fully bonded interface the two loading cases, a, > 0 and a2 2 >

0 exhibit very similar behavior with a limit strength of 600 MPa. However in the case of a weak

interface, the strength for a11 > 0 is 310 MPa while the strength for a22 > 0 is 270 MPa. This

difference indicates that a system with a debonded interface does not exhibit the transverse

isotropy commonly assumed for fiber reinforced composites. It was observed in the calculations

that the debond always initiated close the point of the interface whose normal coincides with the

direction global maximum principal stress.

Pure transverse shear loading results in global strains that have both shear and normal

components. For a fully bonded interface the normal strain component exists only when one of

the constituents has a non-linear response. However for this case, as shown in Fig. I lc, the

normal component is very small compared to the shear strain. For a weak interface the normal

strain is small before debond and grows to 30 % of the shear strain after debond, Fig. 1 lc. For

a initially stress free state the debond occurs earlier and the normal strain component is greater.
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4. FAILURE MECHANISMS

The computational procedures described previously provide the local stress and strain

distributions in the composite which can be used to determine local failure conditions of the

constituents. Macroscopic failure condition for the composite can then be predicted for different

loadings.

4.1 Longitudinal Tension

The fracture in the longitudinal tension is dominated by fiber failure. The observed failure

strain of the composite is of the same magnitude as the fiber failure strain e. The stress at

failure can be written as

u'rs-f0F+(1 -f)OFym(Ef+--) (8)EM,

where a.. is yield stress of the matrix at fiber failure and uý is the stress in the fibers at failure.

For the present residual stress state y, = 900 MPa at failure.

The exact nature of the fiber failure is still an open question. Failure occurs when a defect

of critical size has formed in the composite. One extreme estimate of the strength is to assume

that fracture occurring in two adjacent fibers within a stress transfer length causes a critical

oefect. The average stress in the fibers when this occurs is give by
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In -

0 f • '22 m+1)(k-1) (9)

where v is the loaded volume. k the stress concentration in a fiber next to a broken fiber, d is

the fiber diamn:!er, 8, is the stress transfer length and r j, the gamma furction. This is the model

by Zweben and Rosen (1970) modified to account for a linearly varying fiber stress within th0t

transfer length of th,. fiber. Based on data for the SCS6 fiber given by Bai" et al (1995) it was

deduced that the average fiber strength is a. = 4.3 GPa for a gauge length I. = 6.25 mm and the

WeibuUl modulus is mn = 6.5. For the present specimen the loaded volume v = 125 mm3 and the

transfer length is estimated to be 8, = 'T,,'/ad/4, where the sliding resistance of the interface -T,'

= 115 MPa. An upper bound on k for fibers arranged in an hexagonal array is k =1.17. Use of

these values in eqn. (9) gives a failure strength a. = 1890 MPa.

The other extreme is to assume that fiber fractures do not introduce local stress

concentrations in adjacent fibers and that global load sharing occurs. The fiber contribution at

the load maximum for the global load sharing model has been estimated in an approximate way

by Curtin (1989) and Neumeister (1991) as

O -'-F m+1 4 1,°rf(l+1/m) (10)
F 1 IX+1/m) m +2L2 d aF-I -

This model predicts a strength ay-r = 2080 MPa. Both models predict the strength within

10% and are in good agreement with the experimentai result. Tests of specimens of different
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volumes and with stress gradients are required to reveal the exact nature of the failure process

and to discriminate between the models.

4.2 Transverse Tension and Shear

The observed failure strain in transverse tension is 1.2% vhich is approximately 40% of

the uniaxial matrix failure strain (Fig. 1). The computations for transverse tension and shear

indicate that the stiff fibers cause muliiaxial stress fields to develop in the matrix. When a ductile

material is subjected to stress states with a high hydrostatic tension component the failure

ductility is reduced. Hancock and Mackenzie (1976) suggested that failure is the iesult of void

nucleation and growth. They estimated that the effective plastic strain at failure, iej, for

multiaxial stress states is related to the uniaxial failure strain by

ef'.1.65eoeX4_1Ykk (11)

where O is the plastic component of the uniaxial failure strain of the matrix, okk is the

hydrostatic stress and a' is the von Mises equivalent stress. From the uniaxial stress-strain curve

for the Ti alloy in Fig. 1. it can be deduced that co = 3%. This value for the matrix foil is

substantially lower than what is normally observed for P-Ti alloys. The low matrix ductility

implies that large strain effects can be neglected in the analysis. For a time dependent stress state,

the void growth rate has to be integrated over the history and the used portion of the matrix

ductility is given oy
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jexp a] )-' , e (12)

D- 0 L2Ge
1.65c0

where the variable D is used as a damage variable with D--O for a virgin material and D=1 when

the material has lost its load carring capacity and E' = ej. The evolution of the damage D has

been calculated by integrating eqn. (12) numerically using the stresses and strain increments from

the computations.

The distribution of the damage parameter D in transverse tension is shown in Fig. 12 for

a global strain of 1%, which is close to the observed failure strain of 1.2%. The computations

indicate that most of the load carrying capacity is lost. A region of high damage is localized in

the matrix ligament between the fibers and stimulates fracture on a plane approximately at 450

to the loading direction. Microscopic observations (Janssor et al, 1991) showed the failure

surface consists of plastically deformed matrix ligaments and debonded matrix fiber interfaces.

The damage distribution for transverse shear with xt > 0 is shown in Fig. 13 for a global

shear strain of 1.6% . The trend is similar to transverse tension with a region of high damage in

the matrix ligament between the fibers, orientated in the direction of the global tensile principal

direction. The damage starts to exceed unity in some regions of the matrix when the global stress

is 272 MPa, which is 13% lower than the predicted limit strength of 310 MPa. This suggests that

the available matrix ductility may be exceeded in portions of the matrix before the limit condition

is reached.
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4.3 In-Plane Shear

The only non-vanishing stress components in-plane shear, except for the residual thermal

stresses, are the shear stresses r,3 and T.. This implies that this type of loading does not cause

high hydrostatic stresses to build up in the matrix. The effect of the initial residual stress is small

and the failure criterion described previously then simplifies to

D- (13)
1.65 LE0I

The computed damage distribution for longitudinal loading corresponding to the observed

failure strain Y3= 3% is shown in Fig. 14. The damage exceeds unity across the whole matrix

ligament between the fibers indicating that the model predicts a failure strain slightly lower than

the experimental value.

5. CONCLUSIONS

The longitudinal and transverse tensile properties can be predicted by a computational

model which makes use of fiber and matrix properties, fiber distribution and an interface which

debonds when the interface is subjected to normal tension. In addition to predicting the elastic

properties and limit strength the calculations also predict the failure strains. The residual stresses

following the fabrication strongly affect the mechanical behavior. The compressive n.rrnal

residual stress at the interface dictates that the initial elastic properties are consistent with normal
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continuity at the interface. In transverse tension the applied stress can overcome the residual

stress and interface debonding occurs which gives arise to a loss of stiffness. The presence of the

debond also decreases greatly the transverse limit strength, with the composite strength being

dictated by a matrix perforated by un-reinforced holes.

The in-plaine shear properdes cannot be predicted by a frictionless interface. It is necessary

to assume an initial sliding stress of 185 MPa that subsequently reduces to 115 MPa when the

sliding is fully developed. However the interface characteristics determined from the shear test

with longitudinal loading predict the substantially different strength for the shear test with

transverse loading. The different limit behavior for transverse and longitudinal shear loading

indicates that the in-plane shear response is strongly dependent on the extent of the plastic zone

along the fiber direction. This feature has to be addressed in the formulation of macroscopic

constitutive equations.

The analysis of the transverse tension test indicates that the sliding resistance at the

interface can be modeled by Columb friction with a coefficient of friction 4± - 0.8. Use of this

value and the residual stress state following a consolidation temperature of 900 C predicts an

initial sliding resistance of 160 MPa for in-plane shear. This is close to the value determined

from the inplane shear test of 185 MPa. However, during the in-plane shear loading after matrix

yielding the normal pressure at the interface relaxes and the steady state sliding resistance

vanishes for a Columbs friction model. Microscopic observations of the fibers showed that the

fibers have a surface texture with ridges oriented in the hoop direction. For in-plane shear loading
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the sliding direction is normal to the ridges while it is parallel to the ridges for transverse tension

and this could cause the observed steady state sliding resistance for in-plane shear.

Using the mechanisms of interface debonding and a void growth model for matrix failure

it was possible to predict with accuracy the macroscopic failure strains for matrix dominated

failure modes. The exact nature of the longitudinal failure is still an open question. However,

models of two extreme failure conditions give approximately the same predictions of the failure

stress.

It has been demonstrated that the composite properties can be predicted from the matrix,

fiber and interface properties by using established computational procedures. In this case the

interfacial properties have not been measured but have been inferred form the longitudinal shear

test of the composite. Independent push-through tests (Warren et al, 1992) show sliding

resistances that are close to the saturation value used here. The push-through test may therefore

be used as a means of providing some information on the sliding characteristics for the analysis.
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Table 1. Matrix and fiber properties at ambient temperature

Matrix Fiber

Young's Modulus (GPa) 115 360

Poisson's Ratio 0.33 0.17

Tensile Strength (MPa) 950 4300

Strain to failure in tension (%) 3 1.2

Coeff. of thermal expansion (I/C) 9.7 10.6 4.5 1(Y6

Table 2 Comparison of computed and experimental elastic properties

E-3 v,, Ell V12  V13  IIL G03" 13L" Gl3" Cl3L'"

GPa GPa MPa GPa MPa GPa MPa

Experimental 196 0.25 129 0.34 0.2 420 62 300 62 400

Computed 202 0.27 133 0.48 0.17 420 64 300 73 400

* Longitudinal loading

"Transverse loading
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FIGURE CAPTIONS

Fig. 1 Uniaxial Stress-Strain behaviors of Ti 15-3 matrix and SCS6 fibers.

Fig. 2 Hexagonal array with unit cell indicated.

Fig. 3 Temperature dependence of matrix the yield strength and highest calculate equivalent

matrix stress for a consolidation temperature of 900 C.

Fig. 4 Calculated residual stress distribution after consolidation at 900 C.

Fig. 5 Longitudinal stress-strain behavior for different consolidation temperatures.

Fig. 6 Transverse contraction for longitudinal loading.

Fig. 7 Transverse tensile stress-strain behavior for different interface characteristics.

(a) Effect of interface bond condition.

(b) Effect of friction at the interface.

Fig. 8 Contraction in unloaded transverse direction for transverse loading. AT= 0 indicates an

initially open interface and AT=-, indicates an interface that remains closed.
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Fig. 9 Contraction in longitudinal direction for transverse loading.

Fig. 10 In-plane shear stress-strain curves for different sliding conditions at the interface.

(a) Longitudinal loading

(b) Transverse loading

Fig. 11 Calculated transverse shear stress-strain curves for different consolidation

temperatures and interface bound conditions

(a) Stress-Strain curve for a=-2 =-

(b) Stress-Strain curve for ay=-az=-T

(c) Normal strain components for the two loadings.

Fig. 12 Distribution of damage parameter D for transverse tension, at E11=l%.

Fig. 13 Distribution of damage parameter D for transverse shear at y-=1.6 %.

Fig. 14 Distribution of damage parameter D for in-plane shear, at 73-=3%
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TRANSVERSE DUCTILITY OF METAL MATRIX COMPOSITES
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ABSTRACT fiber strength and in this circumstance the transverse strength

The role of the fiber matrix interface bond on the and modulus of the composite are lower than those of the

transverse ductility of continuous fiber reinforced composites matrix. The interface strength also affects the ductility of the

has been investigated. Two specific systems have beer composites.

considered: an Aluminum alloy matrix reinforced by

Alumina fibers, characterized by a strong interface and a To clarify the effect of the bond condition on the

Titanium alloy reinforced by coated Silicon Carbide fibers, transverse ductility, two different continuous fiber reinforced

characterized by a weak interface. A micro-mechanical study composite systems are investigated in this study. One

indicates that the bond condition has a significant effect on the composite consists of an Aluminum alloy reinforced w:th

state of stress in the matrix which in turn dictates the available Alumina(A1203) fibers. An important characteristic of this

matrix ductility. The micro-mechanical predictions arm in good material is the combination of a strong bond at the fiber-matrix

agreement with the experimental results for the two systems. interface and a matrix with a large ductility of 30%. The other

composite consists of a Titanium alloy reinforced with coated

Silicon Carbide(SiC) fibers. This system features a weak bond

1. LNTRODUCTION between the fiber and matrix and a matrix ductility of 37c. A

micro-mechanical study has been performed to understand the

Metal matrix composites reinforced with continuous fibers mechanics that governs the behavior of these composites. The

have attractive strength and stiffness properties. They have computed results are compared with the experimentally

the advantage of providing superior transverse properties determined mechanical behavior in sections 2 and 3. A mat-tx

compared to polymeric matrix composites. Transverse failure criterion based on void nucleation and growth is

properties are strongly dependent on the fiber matrix interface suggested in Chapter 4 and verified with the aid of the

and systems with strong interface are expected to have a computations and experiments. As a result of this study it is

higher transverse strength and stiffness than the matrix. possible to predict the transverse ductility of the composite in

Some systems have a weak interface in order to maintain the terms of the matrix ductility and the interface bond strength.
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2. EXPERIMENTAL PROGRAM Transverse stress-strain curves for the FP/AI composite

are shown in Fig. I. from which a devianon from lineariy is

The composite with strong interface bond is DuPont's observed to occur at 75 MPa, The ultimate strength is 200

FP/AI reinforced with continuous a-alumina fibers in a MPa and the strain to fracture is 0.8%. The ultimate strength

unidirectional lay-up [Champion et al, 1978]. The fiber is about 50% higher than the ultimate matrix strength while the

volume fraction was determined to be 55%. The fibers have a failure strain of 0.8% is only 3% of the 30% failure strain of

diameter of approximately 20 gim, a modulus of 345 to 380 the matrix [Sakui and Tamura, 1969].

GPa, a tensile strength of 1.9 to 2.1 GPa for 6.4 mm gauge

length, and a fracture strain of 0.3-0.4%. The matrix material The fracture is observed to be localized to one narro%4

is a 2 wt% Li-Al binary alloy and its tensile properties are band oriented approximately 450 to the loading diretton, The

shown in Fig. 1. The composite is fabricated by vacuum- fracture surface is confined to the matrix and no bare fibers

infiltration of the molten matrix and was available in the form were visible on the fracture surface. The matrix fracture is

of a plate of 150 x 150 x 12.5 mm thick. ductile with the appearance of voidage.

The composite with the weak interface bond consists of a The transverse stress strain curve for the SCS6,'i

Titanium alloy (Ti-15V-3C2-3Su-3AI) matrix reinforced by composite is shown in Fig. 2. A slight deviation from the

connnuous SiC fibers (SCS6). The mechanical properties are initial elastic response occurs at a stress of 150 MPa (as

reported in [Jansson et al. 1991a]. The fiber volume fraction illustrated in Fig.4) and the ultimate strength is 420 .MPa.

was determined to be 35%. The fiber diameter is 150 4im and which is less than 50% of the mamix strength of 950 MPa,

the elastic modulus is 360 GPa. The matrix properties, The composite failure strain is 1.2% compared to the observed

determined from a delaminated matrix foil, are given in Fig. matrix failure straain of 3%.

2. The composite is made by hot-pressing alloy foils between

the fiber tapes. The composite was available in plates of 150 x The macroscopic fracture surface is perpendicular to the

150 x 2 mnm thick. tensile direction. The failure surface is irregular %,lth

debonding that is a combination of debond at the fiber mam x



inter ace and fracture in thz carbon layer of the fiber The mt'amx. The transverse loadung hase been smullated ti ,c.:ng

matrx ligaments between the fibers exhibit a ductile fracture the array in the , .iaection. Thri loadinz coes no: a,'.,ie <:;

[Jansson eti al .1991al. on planes that are unconsTrained n% •he fi'ers in ::•c-

reasonable results It also gives the :orre,: ,, s:nz, 'r

SCS6,fTi composite because the marix area :rac:ton or- me

fracture surface and the weakest cross-,ec:-on ot the irra- -- e

Y2close A loading in th,! Z-d,,rtcitor. n sures)

]I r The governing boundary value problem for the effet %

2b properties of the unit cell is two dimensional and has been2b _T Y

solved with the Finite Element method by using ABAQLS

Sfinite element program 11988]. A 10 node biquad&rai:c

quadrilate generalized plane strain element vth rewith ed

f integration was used to avoid locking. The considered loading

2o of the unit cell. Fig. 3. is symmetric with respect to v1 and N,

.- axis. This implies that only an eighth of the indicated unit cell

,, 2A'b in Fig. 3 needs to be analyzed. The boundary cond~tions for

different loadings are given in the reference[Jansson. 19901.
Fig 3 Hexagonal aray with unit cell indicated.

In the calculanons, the fibers are assumed to be linear elastic

and the matrix behavior is modelled by a small strain P2 plastic

3. MICRO-MECHANICAL STUDIES theory. The interface of the FP/AI is sufficiently strong to

assume displacement continuity across the interface, w hereas

By using the theory of homogenization in conjunction the interface of SCS6/Ti matrx is weak and interface

with finite element procedures. the mechanics that governs the displacement continuity can not be assumed. The interface

behavior of the composite in terms of the properties of the was modelled by assurming that it is frictionless and can just

fiber and the matrix have been studied. transfer normal compressive tractions.

The composites both consist of long fibers in a

unidirectional layup. The fibers in the FP/AI composite are The elastic properties of the FP fiber and alurrunum matrix

randomly distributed in the transverse plane while the fibers in are readily available from the literature. However. the flow

the SCS6/Ti 15-3 composite are more arranged. In the model properties of the Al-Li mamx alloy are strongly dependent on

to be analyzed the fibers are assumed to be long parallel histories of heat treatment and cold-working [Stark ct al.

cylinders arranged in a hexagonal array, Fig, 3, This is the 1981. and Sakut and Tamura, 19691. Details of the

periodical array which has the mechanical properties with the processing of the composite and of any post heat treatments

closest symmetries to a composite with randomly distributed are not available and the flow properties of the Al matrix could

fibers. Both systems are transversely isotropic when the not be determined from the literature. Those were deterrmuned

constituents are linear elastic but the hexagonal array has a by fitting the calculated response to the inplane shear stress-

weak deviation from transverse isotropy when the matrix strain curve[Jansson and Leckie. 1991b]. The matix

exhibits a nonlinear stress strain relation [Jansson, 19901. properties obtained could be used to predict accurate stress-

The deviation is most pronounced for a perfectly-plastic strain relationships for the other loading states. The mamrx

3
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properties of the SCS6/Ti composite were determined by consequence of debonding that reduces the effectise load

performing tests on a foil extracted from the composite. carrying area of the composite. The stress strain pred:ctions

using the fiber and matrix properties described above agree

The residual stresses induced during processing strongly well with the experimental observations which gives

affect the stress strain characteristics of the SCS6/Ti composite confidence in the use of the calculation results for the

and have to be included in the analysis. The stress field has a interpretation of rrucro-mechanical phenomena.

compressive component across the fiber matrix interface

which inhibits the onset of debond when the composite is

subjected to transverse tensile loading. The residual stresses 4. FAILURE DUCTILITY

induced during the fabrication was modelled by letting the

composite be stress free at the consolidation temperature. The Micrographic observations [Jansson et al. 1991a,

residual stresses build up during subsequent cooldown and are Jansson and Leckie, 1991b] suggests that failure is due to

dominated by the thermal mismatch and the temperature ductile fracture accompanied by void growth in both the

dependent yield stress. Although the consolidation was done aluminum and titanium matrices. It is known for Al-Li [Pilling

at approximately 9000 C the strength of the Ti alloy is and Ridley. 1986] that the ductile failure is the result of void

considerably smaller at temperatures higher than 6000C and nucleation and growth from small particles.

the major portion of the residual stress is built up below

6000 C. For the purpose of computation, it was found to be The computations show that the stiff fibers cause

sufficient to use the temrerature dependence of the matrix as constrained multiaxWal stress fields to build up in the mamx. In

shown in Fig. 5 and the properties of the SCS6 fiber and Ti the studies of Hancock and Mackenzie [1976] it is suggested

matrix are given earlier, that when the failure is the result of void nucleation and

growth the effective plastic strain at failure for multiaxal

The calculated transverse stress strain relationship , using stress states has the form

the interface conditions and the residual stress state given

above , is shown in Fig. 4. The calculations predict that Ef = 1.65coexp I kk1)

debonding occurs when the stress is about 160 MPa. The

maximum attainable transverse stress is about 410 MPa and where E, is the plastic component of uniaxial failure strain ot
this is 43% of the matrix strength. This reduction is a

the ma4x, o• is the sum of the prncipal stresses and

4



the effective stress. The result is based on the void growth - '-

mechanism suggested by Rice and Trace,, [1969]. The plastic ,,----/

component of uniaxial failure strain for Al-Li was reported to

be approximately 0.3 [Sakut and Tamura, 1969] and that for

a foil of Ti alloy was found from Fig.2 to be 0.02 , _ 0 '

For a time dependent stress state the void growth rate has ,2s

to be integrated over the histoty and the failure strain is then

given by the condition !-5

iex (k& d!

D = 0 (2) a Hydrostanc sitoss a'" flPa,
1.65EO

where D=I at E= Ff. The variable D here will be used as

a damage variable since it is equal to zero for a virgin material 0

and approaches unity when the material has lost its load

carrying capacity. 0
0010

The spatial stress and strain distributions in the matrix for

the FP/AI system are shown in Figures 6a-c for a global

transverse strain of 1%. The plastic zones ame fully developed

at this strain. High hydrostatic stresses, Fig. 6a, develop near 90

the fiber matrix interface at approximately 300 to the direction bN Effiecve strss 5(MPa)

of tensile stress(y1 direction in Fig.3). A relatively high 9
hydrostatic stress is also present between the fibers, away .7

from the interface and close to the axis of stress. The 2.. 4 7 >

distribution of the effective stress, Fig. 6b, is more uniform 6.

19and has a high value at the location of the high hydrostatic 11 44

stress component. The effective plastic strain, Fig. 6c, attains

its highest value at the interface approximately 500 to the y1

axis. It is relatively low at the location of the highest 22

hydrostatic stress.

The stress and strain distributions for SCS6/Ti system are 0 o
shown in Figs. 7a-c for a global strain of 1% . In contrast to

c) Effectrie plastic s•'i n•'w d

the FP/AI system the highest hydrostatic stress here is in the

matrix ligament between the fibers at 900 to the y, axis. Fil 6Stress and Strain dtsinbunorts in the mamt7 fot FPfAl

During the loading, the interface debonds and opens up at the 41 ell

5



y I axis and the ligaments between the fibers carry the load

2100 The fibers remain in contact A ith the matrix ligament since the

Stransverse contraction of the matrix is higher than that ot the

S1350 \Fibers, and this reduces the hydrostatic stresses close to "e

" 350 13" 
interface. The effective stress. Fig. 7b. vanes more than for
the FP/AI system and has the highest va.lue in the ligament

close to the slipping interface. Ho.ever. the high

concentration is confined to a vere small region. It has been

observed that slip-bands are iniuated at this locanonlJansson et
0 600 al a, 1991 a).

\1\
a)Hydrostatc stress a0k (\IPa) The distribution of the damage parameter D. defined by

equation (2). is shown in Fig. 8a for the FP/AI system and in

Fig.8b for the SCS6/Ti system for a global strain of 1%.- This

950 \ 700 strain is close to the observed failure strains of 0.8% and

1.217 for the two systems respectively. The region %kith a

high damage is relatively small for the FP/AI system and is

confined to a band in the middle between the fibers away

from the interface. This explains why the fracture surface

observed is covered with the matrix and no bare fibers are

visible. During the loading, the load carrying capacity of the

matrix is first lost at the small region with the high damage.

"This local loss of load carrying capacity is sufficient to trigger

bt Effectve stess 6(MPa). a global instability with a shear fracture in the orientation

indicated by the damage zone.

0 .7 5 0 .3 .. . . . . .. . . . . . . .

• .3 3 . . . . . . . . . . . . . .

o] OB<D<1O "

[] 05<D<0.8

o] 0, 0 rOrD<o.5

o Effective plastic s•tir. EIIC(O .),

Fig 7 Stress and Strain dismbuiions in the matrx for Fig 8 a) Dismbution of Darnage vanabit D in the mamx for

SCS6/tiai it 1a 1% FP/Al at EII - 1%
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strain of the matrix is reduced on!v to i 21t faiLure strain ,!

N the composite.
N.,

I 1 0 < D The proposed failure CI.tenron of T. a ,ion i. cn:,on

t 0 9 < D < 1.0 with finite element calculations pet,,'ed 'ý- an C!tima~e 0

[ 0 8 <D < 0 9 transverse strain to failure of the compos,,te in te..m o( ", e

o 0 5 < D < 0 8 matrix failure strain and the fiber/mamx interface cond;:ion

M O0 <D< 0'S
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LOCALIZATION DUE TO DAMAGE
IN TWO DIRECTION

FIBER REINFORCED COMPOSITES

Franqois HILD
Per-Lennart LARSSON
Frederick A. LECKIE

Abstract: Fiber pull-out is one of the fracture features of fiber reinforced ceramic matrix

composites. The onset of this mechanism is predicted by using Continuum Damage

Mechanics, and corresponds to a localization of the deformations. After deriving two

damage models from a uniaxial bundle approach, different configurations are analyzed

through numerical methods. For one model some very simple criteria can be derived,

whereas for the second one none of these criteria can be derived and the general criterion

of localization must be used.
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1. Introduction

Ceramic Matrix Composites (CMC's) can either be reinforced by fibers in one direction or

by fibers in two directions. The aim of this paper is to study composites reinforced with fibers in

two perpendicular directions by extending a previous study on CMC's with fibers in one direction

(Hild et al., 1992).

The rupture of most of the CMC's involves two separate failure mechanisms. The first

mechanism is matrix cracking. The matrix cracks develop and their density saturates as the load

level increases. The second mechanism is fiber breakage accompanied with fiber pull-out.

Enventually, the final rupture will take place around one of the matrix cracks: it correponds to

localized fiber pull-out due to fiber breakage. The occurrence of this mechanism corresponds to

the appearance of a macro-crack and will be described by a localization of the deformations. The

initiation of macro-cracks in a structure during service often constitutes the early stage of the final

failure of the structure. Starting from a material that is assumed free from any initial defect, the

initiation of macro-cracks can be predicted using Continuum Damage Mechanics. The driving

force is fiber breakage, which is accompanied by distributed pull-out. The approach using

localization has successfully been used for ductile materials (Billardon and Doghri, 1989a,b;

Doghri, 1989). The initiation stage is considered as the onset of a surface across which thr velocity

gradient is discontinuous. Under small deformation assumptions, this phenomenon is mainly

driven by the damage mechanism that causes strain-softening. For CMC's, the damage mechanism

is related to fiber breakage, and the damage variable describes the percentage of broken fibers (Hild

et al., 1992).

Although localization can be studied at the scale of fibers bonded to a matrix through an

interface (Benallal et al., 1991a), i.e. at a micro-level, localization also cauj be analyzed at a meso-

level, when the material is assumed to be homogeneous. Continuum Damage Mechanics, which

represents a local approach to fracture (Benallal et al., 1991b), constitutes an efficient tool for this

purpose. The progressive deterioration of the material is modeled by internal variables defined at

6A02/93 Localization due to damage in two direction fiber reinforced composites (revised version) 3



the meso-level. These variables are called damage variables. The damage state and the evolution of

these variables is obtained through a uniaxial study based on fiber breakage (Coleman, 1958: Curtin

1991). A 2-D plane stress analysis is performed based on an extended model. The loss of

uniqueness and the localization are studied for shear free states. A criterion referring to a critical

value of the damage or to a maximum normal stress can describe the localization, which constitutes

an objective criterion, from a design point of view.

2. Localization and Loss of Uniqueness

The failure at a meso-level, with the initiation of a macro-crack, is defined as the bifurcation

of the rate problem in certain modes, viz. the appearance of a surface across which the velocity

gradient is discontinuous (Billardon and Dogh:., 1989a). This phenomenon is referred to as

localization, and corresponds to the failure of the ellipticity condition. The condition of localization

can also be compared to the loss of uniqueness of the rate problem.

Stationary waves were studied by Hadamard (1903) in elasticity, by Hill (1962) and Mandel

(1962) in elasto-plasticity. Rice (1976) related the localization of plastic shear bands to jumps of

the velocity gradient. Borrd and Maier (1989) have given necessary and sufficient conditions for

the onset of modes inside the body, who extended the results given by Rice (1976) and Rice and

Rudnicki (1975, 1980).

Under small strain assumption and in elasticity coupled with damage, the behavior of a

material is assumed to be described by the following piece-wise linear rate constitutive law

{ F:E ifD=0(=' =l(1)

7-e if f) e0
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where • and E respectively denote me stress and strain rates, . and H are fourth rank tensors, -'- is

assumed to be positive definite, and D is either a single damage variable or a set of damage

variables.

Localization occurs inside the body, if and only if (Rudnicki and Rice, 1975: Borre and MaNer,

1989; Benallal et al., 1991a)

Det (nS,-..n) = 0 for a vector n#i) and at a point inside a structure Q (2)

This criterion corresponds to the failure of the ellipticity condition of the rate equilibrium equation;

it also can be used as an indicator of the local failure of the material, at a meso-scJe (Billardon and

Doghri, 1989a).

Furthermore, any loss of uniqueness, considered as bifurcation of the rate boundary value

problem, is excluded provided

S: s> (3)

In this study, the quantity that defines loss of uniqueness and localization is the linear tangent

modulus H". In the following, we analyze loss of uniqueness and loss of ellipticity (i.e. localization)

for states when

{el I= at C22(4El 1 E2 (4)

The parameter at is referred to as the strain ratio and its inverse is denoted by 13. These particular

states only are considered. When the hypothesis of Eqn. (4) is satisfied, the non-vanishing

components of the vector n are nI and n2, and the matrix A = n.S" .n reduces to (Ortiz et al., 1987)
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A=[ ::z :: nln2(H1212+H 1122)
A= (5)

nln2(H1212+H221 I) n 2 H 1212+n 2H2

if we rewrite (nl,n2) = (cos8,sinO), X = tan2O, then the localization condition is equivalent to finding

real positive roots of the following equation

a X2 + b X + c = ) (6)

with

a = H1 212H 2222

b = H111 H2222 - H1 122H22 11 - H1122H1 2 12 - H22 1 IH1212 (7)

c = HI212HIl l

If real pcsitive roots are found, then the localization direction is perpendicular to the ve tor

(nin2,O) = (co,0,sinO,O), characterized by the angle 0 (Fig. 1). The values of H11 1 1, H2222, H1 122,

H22 11 and H 1212 are model dependent arI specific models are now developed.

3. Constitutive Law•

This section is concerned with the development of two constitutive laws in the case of

CMC's reinforced in two perpendicular directions. At constant temperature, the behavior of a

CMC reinforced by unidirectional fibers in the x2-di-'ection (ee Fig. 1) can be characterized by the

Helmholtz free energy dcnsitr V2, which is a fuihctin of the state variables El 1, E22, El2, and the

damage variable D2 in the x2-dirt-jon
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PW2 = pW(EC1 C22,iE12.D2,f 2.k2 ) (9)

where D2 represents the fiber degradation in the x2-direction, E 2 the Young's modulus in the

x2-direction, V 12 the Poisson's ratio, k2 the ratio of the Young's modulus in the fiber direcuon (E-)

to the Young's modulus in the transverse direction (E1), and G12 the shear modulus. It is worth

noting that the elastic quantities depend on the volume fraction of fibers. The expression for the

general Helmholtz free energy density i is given by

piE(x,y,z,d,f,k) E2(f) x2 + 2vl 2k' 1-d)xY + kv21

k Il-vf~k(l-d)}

where p is the material density, x,y,z are dummy variables representing strains, d damage, f volume

fraction, and k Young's moduli ratio. The stresses and the thermodynamic force Y2 associated to the

damage variable D2 are derived from the Helmholtz free energy density W2 as follows

V2 4I2 (10)011 !/ = 0~l22 = P DF2 2(512 = P DF-•12 (0

Oll~~ - ' W2

Y2= P 2

The explicit expressions for the stresses related to the strains and the damage variable modeling the

fiber degradation in the x2-direction are given by

Cy E22 [C! I +V12(l-D2)k2e- 2 2]k2 [ l-v21 2(1-D 2)k2 ]
E2( 1-D2)

G22 - l 2(lD2 (E22+V 12SI) (11)
l-VI 2 ( 1-D2)k 2

(12 = 2GCI2EI2

6/02N93 Localizauon due to damage in two direction fiber reinforced composites (revised version) 7



The damage state of fibers in the x2-direction, D2 can be related to the stress (and is denoted

by DS1)) or strain state (and is denoted by D(,2)) The relationship is either implicit in terms of the

normal stress in the x2-direction (model #1)

1) - exp ( [ D•)f22c m+ if E2_r > 0 and i22 >0 (12)

where m is the shape parameter of a Weibull law (Weibull, 1939), ac the characteristic strength

(Henstenburg and Phoenix, 1989), and f2 is the volume fraction of fibers in the x2-direction; or

explicit in terms of the normal strain in the x2-direction (model #2)

D)= 1-ex E- ( + ifE22 > 0 and i 22 > 0 (13)

where Cc is related to the characteristic strength Oc by Oc = EF C (EF is the Young's modulus of

the fibers). Both models describe the same material behavior when subjected to uniaxial tension.

However the models give different predictions for multiaxial loading states (Hild et al., 1992). It is

worth noting that the damage evolution laws are a priori independent of the volume, since we

assume that the local behavior of the fiber degradation is not dependent on the total length of the

fiber (Curtin, 1991). This type of behavior is observed when distributed pull-out happens in

conjunction with fiber breakage, and it can be shown that in most practical cases, the statistics

driving the fiber breakage is independent of the total length of the composite. On the other hand, if

the composite length becomes very small, a length dependence is found again, and in this case the

evolution of the damage variable is mainly given by a fiber-bundle-type of behavior, whicti leads to

replacing m+l by m, the characteristic strength Cc by (To (L4-o)1/m, where GO is the scale parameter

of a Weibull law, and the scale strai.- E by E. (L0)/nm , where L0 is the gauge length at which the

6/02/93 Localization due wo damage in two direction fiber reinforced composites (revised version) 8



scale parameter has been identified, and O0 = EF EO. Since the results are the same for both damage

evolution laws when the previous permutation is used, we will just express them in the case when

the model is length independent, which is the most relevant in practice.

If the fibers are in the xI-direction then the breakage can be modeled by a damage variable

denoted by D1. Using Eqn. (9), the Helmholtz free energy density pM'I is given by

PWI = PV(S22,C I IX12,D1,fIkI) (14)

If the fibers are in both x1- and x2-directions, then we assume as a first approximation that

the total specific Helmholtz free energy P'12 is given by a law of mixture of the Helmholtz free

energy densities in the x1- and in the x2-directions

PW12 = (1-OP•I + fPW2 (15)

where f is the fraction of fibers in the x2-direction (f-f2/(f1 +f2), and where fl and f2 are the volume

fraction of fibers in the xi- and x2-direction, respectively). This assumption also corresponds to a

Lin-Taylor Hypothesis. The evolution of the stresses is given by

'V 12Oil = p =1 G-O (1-)SI + fS 12

aW12
022 = P aE22 = (1--t")21 + fS22 (16)

C12 = p =- 2GI261 2

where the explicit expression for Sij is given in appendix 1, and the corresponding thermodynamic

forces associated to the two independent damage variables DI and D)2 are
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I, -O w 17)Y = P -- =(-f)p =

Y2 = P "J'22 = fP ;-D-2

Again, the evolution of the damage variables can either be implicit in terms of the respective normal

stresses (model #1)

D(()_=I- exp[ ll)fl } if ElI > 0 andE > 0 (18)

_=DI-)exp { f22  m+1 ifE22 > 0 and i 22 > 0

or explicit in terms of the respective normal strains (model #2)

D(P2) = 1-exp[- (Eli ifE1 1 >Oand 1 li >0 (19)

*.(2) =-ex - ( - ifC22>0andi 22 >0
D- 4- (~[ K)]I

It is worth noting that we assume that the statistical properties of the fibers are supposed to be

identical in both directions. This hypothesis will be maintained throughout the paper since

generalization would be straightforward. Both models are studied for shear free states when the

strain ratio a (see Eqn. (4)), and thus its inverse 03 are given.

3.1. Failure Criteria for Model #1

((1)

For model #1, the evolution of the damage variables is implicit in the sense thatD(1

(respectively DJIt)) is a function of the normal stress aH (respectively 022) and the damage variable

6/02/93 Locahzation due to damage in two direction fiber reinforced composites (revised version) 10



DtI (respectively D i) tself. The evolution is therefore computed by a numerical scheme based

upon a Newton method. To study localization and loss of uniqueness, we need to compute the

tangent operator, which takes the following form

1 (1-=f)FlI + fF 12 ] (1 + fF52FT2) - fF2 2 F72 [(-f)F41 + fF 4 21

[1 + fF2 1F72 ](1 + fF52F7 2) - f(1-f)F2 2F72F5 1 F7 1

[ =(1-f)F61 + fF 6 2) 11 + (l-f)F2 1F7 1] - (1-f)F 5 1F71 [(1-f)F4 1 + fF 42]
[I + fF2 1 F7 2 ](1 + fF 5 2 F 7 2) - f(1-f)F2 2 F 7 2 F51 F 7 1

111122 = [(1-f)F4 1 + fF4 2 ] (1 + fF 5 2 F72 ) - fF2 2 F7 2 [(1-f)F6 1 + fF 6 2 ] (20)
[1 + fF2 1F72 ](1 + fF 52F72 ) - f(1-f)F22F7 2F5 1F7 1

H [(1-f)F41 + fF42] [1 + (1-f)F2 jF 7 1] - (1-f)F5 1 F7 1 [(1-f)FlI + fF12]
[1 + fF21 F7 2 1(1 + fF52F7 2) - f(1-f)F2 2F72F51 F71

H 12 12 = 2G12

where the explicit expressions for Fij are given in appendix 2.

The loss of uniqueness and localization are investigated when the fiber fraction f and the

strain ratio a vary. Although analytical results cannot be derived from criterion (2) in the general

case, some simple results can be found when f is equal to 0 or 1. In these cases, the criteria derived

by Hild et al. (1992) apply. If f is equal to 0 (fibers only in the xl-direction), then localization and

loss of uniqueness occur at the same load level when

( 1 .. l/(m+l)

0"il = Gul = fi (c r(m. )e1 (21)

20 u1
Y1 -Yc- 2

where the stress Gu! corresponds to the ultimate tensile strength in the xj-direction. It is worth

noting that the three previous criteria are easier to compute than the general criterion (2). The
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direction of localization is 0 = 00, i.e., a localization surface perpendicular to the fiber direction. If f

is equal to 1, the same kind of result apply and the direction of localization is 0 = 900, i.e., a

localization surface again perpendicular to the fiber direction. When f•O and ftl. these results

cannot be proved. However the compuations show that loss of uniqueness and localization can be

described very accurately by the two following criteria

Max(D•) D(O1 ) Dc = I- exp(•+l 1 ) (22)

0$11 = Oul or 022 = Gu2 (23)

when the fiber properties are the same in the two directions. The maximum error is .5% in terms of

criteria (22), and (23).

Criterion (22) shows that for model #1, maximum damage at localization depends only on

the Weibull exponent of the fibers. Furthermore, criterion (23) shows that the maximum normal

stress aII (respectively 022) depends only on the volume fraction of fibers in the xI- (respectively

x2-) direction and on the fiber characteristics. This result is consistent with some experimental

observations on woven carbon matrix composites reinforced with SiC (Nicalon) fibers (Heredia et

al., 1992). On the other hand, the localization angle is dependent on the fiber percentage f (see Fig.

2). When the fiber percentage f and the sign of the strains Eu I and C22 are constant, the variation cf

the localization angle is due to the fact that the maximum tensile stress is either reached in the xI- or

in the x2-direction.

Moreover, if the strain ratio cc is different from 0 and 1 then there is a complete symmetry

of the results. If the strain ratio a., the strains S11 and -22 are positive, changing ac into 0, f2 into f1,

changes f into 1-f, and alters the absolute value of the localization angle 101 into n/2 - 101 and keeps

the maximum stresses and damage levels constant. These two properties are referred to as

s-,mmetrm properties, and are mainly due to the features of Eqns. (4), (8), (14) and (15).

When the strain ratio a is equal to 1 and the fiber percentage f is equal to .5, the localization

6/02!93 Localization due to damage in two direction fiber reinforced composites (revised version) 12



angle is undetermined- This is due to the vanishing of the three constants a, b, and c in Eqn. (6), for

HIIII = H1 12 2 = H22 11 = H22 22 = 0. Any value of the angle 0 satisfies Eqn (6). This

phenomenon can be observed when the fiber percentage f is different from 1: if all = auI and 022

(3,, simultaneously, then D1) = D Dc, and H111 1 = H1 122 = H22 11 = H2222 = 0. This

particular result shows that in terms of this model, for a given strain ratio a, it is possible to

optimize locally a CMC reinforced by fibers in two perpendicular directions. Indeed, in terms of

fiber breakage, a condition 011 = Oul and 022 = Fu2 leads to an optimum of the fiber behavior in

both directions.

Model #1 constitutes a straightforward generalization of the fiber bundle models studied by

Krajcinovic and Silva (1982), and Hult and Travnicek (1983). Finally, a shear stress has no

influence on all the previous results since we assumed no coupling between the damage variables

and the shear strain or stress for both model #1 and #2.

3.2. Study of Localization with Model #2

For model #2, the evolution of the damage variables is explicit and therefore is easier to

compute. The tangent operator takes the form

H1 111 = (1-f)(F11- F2 1 F3j) + fFl12

H22 22 = (1-f)F62  + f(F42- F52 F32)

H 1 122 = (1-f)F4 1  + f(F42- F22 F32) (24)

H22 11 = (1-f)(F 4 1- F21 F3 1) + fF42

H1212 = 2Gi2

where the explicit expressions for Fi are given in appendix 2. As shown in the case of fibers in

only one direction (-Hild et al., 1992), the localization criterion cannot be described by some simple

6/02/93 LocaL atilon due to damage in two direction fiber reinforced composites (revised version) 13



criteria as those given by model #1. When fibers are in both directions the latter results are

confirmed. A first consequence is that an optimization procedure can be performed since the

maximum stress at localization, and the maximum damage at localization are dependent on both the

strain ratio ox and on the fiber percentage f.

Since the elastic law given in Eqns. (16) is identical for both models, the symmetry

properties apply also for model #2 (see Figs. 3, 4, and 5). It can also be noticed that the maximum

stress at localization varies with the fiber fraction f and with the strain ratio o..

In the experiments reported by Heredia et al. (1992) the stress at localization was given by

the ultimate tensile strength corresponding to the volume fraction of fibers in the same direction.

This is not found by using model #2. Indeed, in a tensile test, when fI = f2 =.5 the maximum stress

(a22 normalized by the ultimate tensile strength Gu2 is given by .63, whereas the same tensile test

when f1 =.O and f2 =.5 would give a normalized tensile strength GY22/0u2 equal to 1. On the other

hand, the damage at localization D2 normalized by the critical damage Dc is equal to 1.04 when f1

=.5 and f2 =.5 and is equal to 1. when fl =.0 and f2 =.5.

It is too early to draw a final conclusion, but it seems that the predictions of model #1

correspond more to reality than those of model #2. On the other hand, model #2 turned out to give

results very close to model #1 when applied to structures with fibers in one direction (Hild et al.,

1992). This will be addressed in the case of structures with fibers in two perpendicular directions

such as spinning discs.

4. Conclusions

Using a one-dimensional study of fiber breakage modeled by a single damage variable, two

models are derived. Both of them are then generalized to a 2-D plane stress analysis, with fibers in

two perpendicular directions. Whereas model #1 constitutes a straightforward ,enerahization of the

elementary study, model #2 exhibits different features. Indeed, loss of uniqueness and localization

can be described by some very simple criteria referring to Continuum Damage Mechanics for

610293 Localization due to damage in two direction fiber reinforced composites (revwsed version) 14



model #1. Conversely, these simple criteria do not apply for model #2. Physically, model #1 gives

a better description of some experimental trends observed in the case of a carbon matrix reinforced

with silicon carbide (Nicalon) fibers in two perpendicular directions. On the other hand, model #2

is easier to compute, and when applied to the study of spinning disc with fibers in one direction, it

leads to load levels at localization of the same order of magnitude as model #1 (Hild et al, 1992).

Lastly, this study shows that the localization for model #1 can be described by using

criterion (23) derived from the general criterion of localization (2). This criterion can also be used

for a computation in elasticity and may turn out to be sufficient in first approximation to predict

load levels at which at macro-crack initiates, instead of using a computation in elasticity coupled

with damage. This work is still in progress and will be presented in a subsequent publication.
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Appendix 1

El(

-l E2(fl)(t-DI) (C 1+ 12 22)

E-V2(1-D) [i 1 -V 2 1D2k52

S 12 = k2[l 2-v IIIV2 (1-D,))k2I2

_V2

E2()(1-D 2)k~
S21= -- 2( 1) 22+V 12 0- 1 k P1)

1-V12 (1-D 2)k2
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Appendix 2

F1=E 2)(f1)(1-D 1 ) E(2
1-V2 (1-DI)k1  21V2(--)2

F1=E2(f ON 12F-II +F-22 ) E2(f2)V12(V12 F-1 1+E22)

11-V2  I)kl)2 2 (1-V X2( 1-Di2)k)

________________ E2 (f2 )V12 ( 1-D 2 )
F4 1 = E2 f1V 2 (-) F42 2 1-2 )

1-j2(1-DI)kl 1 ,(-2k

F5 1 = E2f)I(lF +2)F2 E2(f2)(V 12FE I +F22)

E2fIV2(V-I2 Ekl~2) F5  1-V(1-D2)k2) 2

F62=E2(fI) FL-E2(f2)( 1-D2)

F7  i~[12 D~~~ f2oc(1-D 2)f2 J

F1=ml-(Elm Me+1))ml F32  a+-' ( r22 0e -22 m+1]

I- M~) ylI1- (M+10 [(1- 2) 2 0
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Figure Caption

Figure 1: Localization mode.

Figure 2: Absolute value of the localization angle in degrees at localization for model #1, the main

caption of the axes corresponds to the case where f2 = .5, fI = .0,.125,.333,.5, and the

captions in brackets correspond to the cases where f1 = .5, f2 = .0,. 125,.333,.5.

Figure 3: Normalized maximum stress at localization for model #2, the main caption of the axes

corresponds to the case where f2 = .5, fl = .0,.125,.333,.5, arnd the captions in brackets

correspond to the cases whert ., = .5, f2 = .0,.125,.333,.5.

Figure 4: Absolute value of the localization angle in degrees for model #2, the main caption of the

axes corresponds to the case where f2 = .5, fj = .0,. 125,.333,.5, and the captions in brackets

correspond to the cases where fl = .5, f2 = 0,. 125,.333,.5.

Figure 5: Maximum normalized damage value at localization (m=4.) for model #2, the main caption

of the axes corresponds to the case where f2 = .5, fl = .0,. 125,.333,.5, and the captions in

brackets correspond to the cases where fj = .5, f2 = .0,. 125,333,.5.
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ON THE NOTCH-SENSITIVITY AND TOUGHNESS OF A
CERAMIC COMPOSITE
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ABSTRACT

A Nicalon TM/SIC fabric (8-harness satin) reinforced alumina
matrix (04C) was loaded in tension to racture. A coating on
the surface of the fibre reduced the strength of the fibre-
matrix bond, Increased the fibre pull-out length and toughness
of the CKC by more than 3 times, and raised the unnotched
strengthby more than 2 times.

1. INTRODUCTION

The development of ceramic-matrix composites (C24C) for general engineering
usage must address the inherent notch-sensitive characteristics for which most
unreinforced ceramic materials are notorious. For most polymeric matrix
composites (PMC) the subject of notch sensitivity is quite well understood and
characterized (1). With the more rigid matrix of M4C's the general design
approaches must not be too strongly influenced by PMC experience and the
possibility of closer attention to the microstructural characteristics, and
particularly the fibre/matrix interface, is required. One example of a
potential C)C-specific design criterion is the importance placed on limiting the
tensile stress or strain to a level below which matrix cracking will be
precluded, particularly when the ambient service environment degrades the
reinforcing fibres.

2. MATERIALS

For a preliminary experimental evaluation specimens of a Nicalon TM/SiC
fabric (8-harness satin) reinforced alumina matrix C4C was obtained. The C(2C
was produced by an aluminium oxide-based slurry process wherein the ceramic
fibre fabric is drawn through a matrix bath to form preimpregnated layers.
These layers are stacked and heated under pressure to establish a well-bonded
laminate before firing to the finished C4C condition. The final ONC comprises
typically 45% fibre volume fraction with 15-20% void fraction (porosity). In
some samples, the Nicalon fibres were coated with boron nitride (BN). Specimens
were cut from four plates of 1.5 mm nominal thickness using a conventional
water-jet system.



Specimen configurations of unnotched and notched type
illustrated in fig. I included a standard "dogbone" and two double edge notched
(DEN) geometries. For comparative purposes, a tensile specimen containing a
central hole was tested,
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FN.i Specimen Config tions

In the experiments -nsile loading was introduced using adhesively bonded
aluminium end tabs ano ; .ATS servohydraulic universal testing machine or an
Instron servomechanical machine. Displacement control was adopted in both cases
using an unclamped gauge length of 150 mm and an actuator velocity of 0.05
mm/min. Strain/displacement measurement was recorded by centrally mounted 10 mm
clip gauges. Three replicates were used for both the notched and unnotched
specimen configurations.

3. RESULTS

Results of the C4C testing are presented in Table 1 and Figure 2 and.
despite the limited data. clearly indicate the superior performance of the
coated fibre system relative to the uncoated system. The coating essentially
provides a reduced fibre/matrix bond strength shown by longer fibre pull-out
lengths (fig. 3). A similar ratio of urnotched to notched strength for the
semicircular notch configuration of both strengths are much higher for the
coated fibre condition. Furthermore, the sharp slit notched DEN specimen
results indicate no significant effect of notch acuity for the coated fibre
condition (see Table 1). The data point on the fig. 2 representing a ratio of
flaw size-to-specimen width of 0.2 was for the configuration of a centrally
located open hole. Of interest here is the location of the data points relative
to the notch-insensitive and ideally notch-sensitive curves. Observe that the
uncoated OCC specimens with the slit DEN configuration exhibit classical notch-
sensitivity.
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All specimens tested displayed substantial nonlinearity in stres strain (for the unnothedcondition) and stress/displacement (tor the notched condition) hut post-failure
examination by scanning electron microscopy revealed surface roughness wit-- exiefl5
fibre pullout for the coated specimens (fig. 3). Failure surfaces for the uncoated samples
were considerably smoother (fig. 3).
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4. DAMAGE MECHANICS AND FRACTURE TOUGHNESS

A further point of interest concerns the notch tensile strength which, for
the IP' configuration with a slit (sharp) notch of length a. is given by the
equation (assuming isotropy):

KC
a n •- K )

where t0z r,nite specimen width correction factor YDEN = 1.98 + 0.36 (2-W)

2.12 W) + 3.42 ( and KC = Fracture Toughness.

For the center cracked plate (02P), Y = 1.77 [10.1 (Z a (2

By substituting the nominal dimensions of the DEN specimens. i.e. 2 = 0.5. we

obtain;

Y DEN = 2.06 and Y O-p = 2.12

Finally, by adopting the simple notch tip danmge zone concept of macroscopic
fracture mechanics introduced by Waddoups. Eisenmann, and Kaminski (2) and
utilizing the preliminary notched. an and unnotched strength, 0. data from

Table 1:

K C K C (2 )

T n YD ra+a

where a represents the dimension related to the size of the notch tip damage

zone which for an unnotched sample can be thought of as equivalent to the
"inherent- flaw size. Next, we obtain

a / a-
_n - 0 =0.86 0 (3)
aa

DE 0.s 3

Hence. a value of a = 1.17 mm is implied.0

Using equation (2) a fracture toughness for the coated C9C material is
estimated as:

Kc = 8.66 s 4m COATEDC' a4C

Following a similar procedure the fracture toughness for the uncoated 4(C
material is estimated as:

KC= 2. 50 MN a UaC)CE

with a value of a 0.54 m.0



Clearly, further research is required to substantiate the above and extend the
correlations for a range of notch sizes and configurations. More extensive
microscopy is required to establish reasons for the shortfall in strength of the"uncoated" fibre laminate which is suspected to be due to fibre damage incurred
during processing. Thus, an opportunity exits here for material enhancements
through improved processing techniques and to further investigate fibre/matrix
interface phenomena.

Some of our exploratory fatigue testing on notched specimens with coated
fibres at cyclic loads corresponding to 50% and 80% of static notched strength
suggested that residual strengths after 10' cycles were negligibly different
from the initial static strength. More extensive research is iequired before
any general and definitive conclusions can be drawn on this subject however.
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1. INTRODUCTION

The high strength/weight ratio and thermal conductivities of metal matrix composites

are properties which make them attractive for application in modem components for which

low weight and good thermal efficiency are essential. An intrinsic difficulty in establishing

the mechanics of these materials is that they are at a very early stage of their development

when changes in their manufacture are frequent and many. As a consequence the amount

of material available for comprehensive testing is limited. Furthermore, the test specimens

tend to be small and have high strength so that problems associated with gripping are

considerable. Consequently, the mechanics describing the behavior of metal matrix

composites must be achieved with only very little information. However, the recent

advances in computational techniques combined with established mechanics principles are

helpful in establishing the material properties and their effect on component performance.

This paper shall describe some of the advances with special reference to the properties

of a composite consisting of an aluminum-lithium matrix reinforced with continuous

alumina fibers. This material combination is distinguished by the strong bond which exists

between matrix and fiber so that stress and displacement continuity conditions may be

assumed. Attempts shall be made to describe the general approach which is being

developed. It should be emphasized that the procedures are not fully developed but

sufficient progress b~s been made to believe that the prospects of success are high.

M Zvcrokn (Ed I
Creep in Structures
It"TAM Symposium Cracow/Poland 1490
C, Spnnger-Verlag Berlin Heidelberg 1991
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diminishea or even lost if multi-laminate systems are adopted. Consequently, if tuLI

advantage is to be taken of the dominant strength characteristics then the fibers Qhould be:

aligned in the direction of maximum stress transmission. In this circumstuance the

transverse properncs of the material are also important since there must be sufficient

strength in the matrix to support the secondary stresses applied in the transverse direction.

In addition to the stron- bond existing between the fiber and the m-, x another important

feature of the composite is the large mismatch in the coefficients of thermal expansion so

that fluctuations in operating temperature induce substantial thermal stresses. It is the goal

of this study to establish the behavior of the composite when subjected to transverse stress

and cycles of temperature. This study shall be used to illustrate how the shakedown

concept can be used to describe the material behavior when subjected to the described

loading conditions and when creep effects are also important.

2. EXPERIMENTAL PROGRAM

The composite studies is Du Pont's FP/AL with continuous fibers in a unidirectional

lay-up. The fiber volume fraction was determined tto be 55%. The FP fiber consists of

99% pure crystalline ac-alumina (A12 0 3) coated with silica that improves the strength of the

fiber and aids the wettring by the molten metal. The fibers have a diameter of

approximately 12 gm, a modulus of 345 to 380 GPa, a tensile strenth of 1.9 to 2.1 GPa for

6.4 mm gauge length, and a fracture sttrain of 0.3-0.4%. The matrix material is a 2 wt%

Li-Al binary alloy. The modulus is 68.9 GPa and Poisson's ratio is 0.32 The lithium

promotes the wetting of the alumina fibers that forms a strong matrix-fiber interface. The

composite is fabricated by preparing the FP fibers into tapes by using a fugitive binder and

the tapes subseqnelty laid up in a metal mold in the desired orientation. The binder is

burned away and the mold is vacuum-infiltrated with the molten matrix. The comp-)site

was available in the form of a plate 150 x 150 x 12.5 mm thick.

The specimen used for transverse tests is shown in Fig. 1. It has a relatively large

radius at the transition from the gripping section to the reduced gauge section to provide a

lov, ,tress concentration and a short specimen to prevent specimen buckling during
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compressive loading. The gauge section is 10 mm lon- and 6 mm wide and 2-4 mn thick.

The strains were mcasured with 3.2 mm strain gauges. Specimen was loaded by an M. T.

S. hydraulic machine and it was heated by means of induction coils. The control of the

temperature was achieved by using thermocouple measurements..

The tests reported in this study involved a constant transverse stress in combination

with cycles of temperature with cycle time 150 s. The temperature and strain variations

were continuosly recorded.and a typical example of the accumulation of strain is illustrated

in Fig. 2.

The transverse stress strain curve at room temperature is shown in Fig. 3, from

which a deviation from linearity is observed to occur at 75 MPa. The tultimate strength is

200 MPa and the strain to fracture is 0.8%. The ultimate strength is about 50% higher than

the ultimate matrix strength while the failure strain of 0.8% is only 4% of the failure strain

of the matrix [Sakui and Tamura, 1969] A representative test for the constant transverse

stress and cyclic temperature is given in Fig. 2 which indicates that transient behavior is

followed by a cyclic response for which there is an increment of strain after each cycle,

i.e., ratcheting occurs in both examples. Similar tests were performed at different values of

constant transverse stress and temperature cycle. In Fig. 4 contours of constant values of

de 1p/dN are plotted, where Ep is the plastic ratchet strain and N is the cycle number.

There are combinations of aT and AT for which no ratcheting occurs when the initial

transient reponse is followed by elastic cycle reponse. This condition is indicated in Fig. 4

as the shakedown condition. When the operating conditions exceed the shakedown

condition ratcheting occurs at rates indicated in Fig. 4. The failure strain was observed to

vary according to the operating condition as indicated in Fig. 5. The failure strain is 0.08%

for high stress and low thermal load whereas for low transverse stress of 30 MPa the

failure strain reaches 12%. Microscopic examination of the failure surface indicates the

presence of voids in the matrix, with no evidence of damage in either the fiber or fiber-

matrix interface. This observation suggests that the failure mechanism in the matrix is

associated with void growth.
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The contours of constant ratchet strain rate plotted in Fig. 4 are generally parallel to

the shakedown surface. This observation suggests that the driving force which drives the

ratchet strain rate is given by

(X= T 'I-,

where Ts and as are the ordinates defining the shakedown condition. The relationship of

d•N/d has the form

d-._ = f(a)
dN

where f(a) is linear for small values of a and increases exponentially as a approaches the

value I - Fig.6.

3. COMPUTATIONAL STUDIES AND THEIR IMPLICATIONS

The homogenization technique has been widely developed and can be used to predict

the composite stress-strain response. The procedure can then be used to determine the

response to the different loading which form the basis of developing constitutive equations

Jansson [1990a]. A difficulty with the approach is the lack of properties of the

constitutents of the composite when they are subject to a complex history of time ,nd

temperature during the manufacturing process.

The elastic properties of fiber and matrix are not greatly affected by the history of

processing and heat treatment of the composite and this makes it possible to use data from

the literature. However, the flow properties of the Al-Li matrix alloy are strongly

dependent on heat treatment and cold-working [Stark et a]., 1981 and Sikui and Tamura,

19691. Details of the processing and post heat treatments of the composite are not availble.

Hence, the exact state of the matrix is not known and the information is insufficient to

extract the flow properties of the matrix from the literature. This leaves as the only option
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to determine the flow properties of the matrix in the composite is to fit a calculated

response, by varying the flow propoerties of the matrix, to an experimentally determined

matrix dominated stress strain curve for the composite. This procedure has been performed

by Jansson [1990b] who determined that the initial yield stress of the matrix is 94 MPa

with a hardening exponent n = 5 (Fig. 3). The matrix properties were then used to predict

the performance of the compsite when subjected to shear and multiaxil stress loadings. The

predictions of the computations agreed well with the experimental observations and

provided confidence that predictions of the computations using the material data from one

experiment could be applied to different loadings. In practice this could lead to significant

savings since complex testing programs may be avoided.

The present composite consists of long fibers in a unidirectional lay up that are

randomly distributed in the transverse plane. In the model to be analyzed the fibers are

assumed to be long parallel cylinders arranged in a hexagonal array, Fig. 7. This periodical

array has the mechanical properties with the closest symmetries to randomly distributed

fibers that are transversely isotropic. Both systems are transversely isotropic when the

constituents are linear elastic but the hexagonal array has a weak deviation from transverse

isotropy when the matrix exhibits a nonlinear stress strain relation Jansson [ 1990b], The

deviation is most pronounced for a perfectly plastic matrix. However, reasonable results

can be expected if effective properties are calculated for loadings that do not permit slip

planes unconstrained by the fibers. This resembles the closest condition to a composite

with randomly distributed fibers.

In the present calculations the fibers are assumed to be linear elastic and the matrix

behavior is modelled with a small strain J2 perfectly plastic theory using the properties

given in Fig. 7.

The governing boundary value problem for the effective properties of the unit cell is

two dimensional and has been solved with the Finite Element method. The displacement

field is interpolated with nine nodes isoparametric elements and reduced integration is used

to avoid locking, 2 x 2 for the hydrostatic component and 3 x 3 for the deviatoric

component of the stress tensor. The nonlinear system of equations is solved with a
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Newton-Raphson scheme. The loading of the unit cell, Fig. 7, is symmetrc with respect

to the Yj and v-, axis. This implies that only an eighth of the indicated unit cell need be

analyzed. A detailed description of the finite element mesh of the implementation of the

method and deviations of the boundary conditions for different loadings are given in

Ja: "Kon 11990a].

In performing the elastic-plastic calculation it was possible to determine the

shakedown boundary defined in Fig. 4. This has been expressed in terms of the

dimensionless loadings EActAT/Oa and TC'Jry. In terms of the material parameters for the

present system the experimental determination of the shakedown surface is also shown in

Fig. 4. The agreement is reasonably good but it is noted that the experimental results

indicate a straight line relationship exists between AT and 3T whereas the computed

boundary is somewhat convex. The differences in the experimental and computational

predictions is likely to be related to deficiencies in the constitutive model for the matrix.

The computational procedures involved very heavy computation since more than 100 cycles

are often required before a steady state condition was reached. For this reason no attempt

was made to determine the behavior for operating points outside the shakedown conditon,

and this is left to a bound method developed by Ponter and Cox [ 1983].

The upper bound applies for loading conditions which exceed the shakedown

condition by a modest amount. The upper bound is given by

AE A- Ž 4Ae
AN

where Ae is the increment of elastic strain given by

Ae - aG1

ET

Aa1 being the stress increment in excess of the shakedown condition and ET is the elastic

modulus in the transverse direction.
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For the optional point shown in Fig. 4 Acy = 35 MPa and with ET =150 GPa

[Jansson. 1990] the upper bound as ratchet strain is

AE: = 15= 0.93x10 3 /cycle150

which compares with the experimental value of 0.5 x 10-'/ cycle.

The failure strain can differ by over an order of magnitude depending on the operating

condition. It is known for Al-Li [Pilling and Rindly, 19861 that ductile failure is the result

of void nucleation and growth from small particles. In the studies of Hancock and

Mackenzie [1976] it is suggested that when failure is the result of void nucleation and

growth the failure strain cf for multiaxial states of stress has the form

ef= 1.65EO0 exp {-3 m} (3)

where c0 is the uniaxial failure strain, 0 M is the mean stress and U the effective stress.

The failure strain for the present matrix in uniaxial tension is reported to be approximately

0.2 [Sakui and Tamura, 1969]. Jansson [1990b] has reported in tests on the composite

under consideration that the strain for in-plane shear parallel to the fibers is also 0.2. From
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the computer studies it has been determined that transverse loading alone introduces a

multiaxial stress state for which - = 2.5 over a large region of the matrix.

Applying the formula for the failure strain gives the failure strain for transverse

loading

E4 = 0008

which compares well with the observed failure. As the transverse stress decreases the

degree of triaxiality decreases and the failure strain is expected to incease.

4. EXTENSION TO CREEP CONDITIONS

Creep experiments have not yet been performed on the composite but these are now

in hand. However, it is possible to gain some insight into the creep behavior using

bounding

theorems for components subjected to cyclic loading conditions. Based on the Bailey

Orowan theory, constitutive equations which describe the creep strains for variable stress

histories can be expressed by the potential developed by Ponter and Leckie (1976]. The

potential form is given by

Q = F(O - s) + G(s)

from which the strain and internal variable rates can be determined to be,

Ef(o - P)a [F = ff

Sh(s)f - p) - r(p) LG

, , i Ul I l II I l I I IhI Ip)]
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where 2= ss and p the internal variable is a scalar

The function f(O-p) is defined by

f(O - P) > 0 when= p

=0 when 0: <p

Following the expression for f(O - p) strains only occur when 4b = p.

For fast loading p = P and

IJ h(p) aa1

so that h(p) can be determined from the short time stress-strain curve.

At steady state condidions p = 0 and

= r(p) (0 40
i h(p) aoij 0( )aj

where o0 is the reference stress and to is the corresponding strain rate. The above relation

can then be used to establish the function r(p). Following the procedure developed by

Ponter [1976], Cocks and Leckie [19881 found an optimized bound for the creep

deformations when the component is subjected to cyclic loading. The bound applied to the

current problem when the composite is subjected to transverse stress 0I and cyclic thermal

loading gives the result

t, - c-ly to
0 u

where OU is the maximum transverse stress corresponding to a matrix yield stress oY

matrix. Reference to Fig. 3 shows the value
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y

Consequently

1.5

The result only applies when the loading condition does not exceed the shakedown

condition for a yield stress corresponding to the reference stress a0 , However the

shakedown condition is known for cry and a simple scaling produces the shakedown for the

reference stress a0. A proviso for the application of the result is that the continuity

conditions between fiber and matrix be maintained. Diffusion mechanisms have been

reported which reduce the shear stress which can be supported at the interface. In these

circumstances the result developed above could be seriously non-conservative.

CONCLUSIONS

It has been demonstrated that the shakedown concept provides useful insight into the

behavior of a metal matrix composite when loaded with transverse stress and cyclic thermal

!oading. It is also shown that a slight modification in which the reference stress is used in

conjunction with the shakedown condition is sufficient to give estimates on the creep

behavior.
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The treatment of fatigue and damage
accumulation in composite design

K.T. Kedward and P.W.R. Beaumont

Differences between the treatment of damage, damage accumulation and fatigue for
various types of advanced composite systems, for example, polymer matrix
composites (PMCs), ceramic matrix composites (CMCs) and metal matrix composites
(MMCs) are discussed in general. The approach for PMCs from the aspect of damage
mechanics is reviewed next and extended to a discussion of various aerospace

I$ certification approaches adopted for PMC structures. Following this is an explanation
of the the, -itical foundations for the 'wearout philosophy' in conjunction with related
damar a fracture mechanics relationships is provided. This concludes with a
survey ut flaw, or more precisely, damage growth rate exponents for various matrix

, and/or interface-dominated failure mechanisms for PMCs and adhesively bonded
joints.

Key words: composites; damage mechanics; wearout

Z5 The process of design has traditionally involved a specialized degradation thereof can influence premature failure. However.
Z6 treatment of damage accumulation and the associated fatigue by far the largest number of development and in-ser.ncc

phenomena, for example. Miner's rule. The treatment of such problems with composite hardware is associate,; with ma'r-x-
Sphenomena for the case of advanced composites tends to be dominated phenomena; that is interiaminar shear ard out-oi-

complicated by the existence of a multiplicity of competing plane tension. This is a major concern in that :aiiure
10 failure modes. The subject assumes an even greater importance contributed by either one or a combination of these ma-rix-
31 when more types of composite systems are considered, for dominated phenomena are susceptible to the following-
ii example, polymer matrix composites (PMCs), ceramic matrix
I composites (CMCs) and metal matrix composites (MMCs) (i) high variability contributed by sensitivity to processing
M to name the broader categories. All composite systems are and environmental conditions, see Fig. 1;
35 considered herein to comprise continuous fibre reinforce- (0) 'brittle' behaviour, particularly for early epoxy matrix

menits. systems;

r Despite wide recognition of the vital importance of (iii) inspectabiliry of local details where flaws or dclcots

Sfatigue degradation and the variety of potential damage mall exist;

accumulation mechanisms existing in complex composite (iv) low reliability associated with thc lack ot aczcrtaOe

= designs, so-called experienced composite technologists fre- or representative test methods and complex.

Al quentiy state that fatigue is not a problem in PMCs. Such localized stress states (The use of the transverse t':,:-"

,: statements may arise from the general observation that the strength of a unidirectional laminate tr our-o•-r.src

reinforcing filaments are not, in themselves, susceptible to or through-thickness tensile strength is genera&.

fatigue damage and consequently fatigue-dominated laminate unconservative.);
it designs subjected to pure tensile membrane loadings may (v) potential degradation of residual static streni,,.

similarly be relatively insensitive to high-cycle fatigue environ- fatigue cyclic load exposure
ments. However, the industry is frequently experiencing The development of stress components that induce inter!aarnar
composite hardware development problems owing to design shear/iout-of-p;ane tension failures is lilustrated ir F: '

,. oversights that result in matrix-dominated load paths; a -herein commonplace generic tcatures of composite harxrc
i number of these problems will be cited below to illustrate designs that frequentlv exreriencC delaminations are simwn
It the subtle manner in which fatigue damage may :ccumulate. I is at such dcrails that PiC structures are partcu..irr

We shall consider PMCs, since these are the most 'mature' vulnerable both under static and fatigue loading. It is oL
i composite systems, and an extensive literature base and interest to observe, here. that it is the propensiz% tor

background experience exists for them. Currendlv, it may delamination and localized matrix-dominated tailurcs ;hts

15 confidently be stated that the composites industry is able to provides the character of mans PMCs in that the nw_-h
design PMC laminates of uniform thickness in a reliable sensitivity may be reduced after titigue load cvclintz lor io-ai
manner. Extensive experience with PMCs has taught us to through-thickness penetrations. On the other hand. t•ti•

11 use fibre-dominated laminate designs, which are most often demands that a fatigue [lie methodolog" should be a.aiiable
specified in the [C°,'=4519C0 °]5 or pseudo-isotropic form with to deal with composite structures that are subiected to out
respect to the in-plane directions. In-plane compression tailure of-plane load components. Naturally, the :aoabiht,'. .t
is somewhat of an exception since the matrix and the predicting the fatigue life is an essential element of the pro'.csS

0142-1123'92'000000-00 ,C) 1992 Butterworth-Heinemann Ltd



,,,D'y typ~caj of ccrtifying aerospace composite hardware We sha' titurn
to this subject in the next section

Review of damage mechanics
6 * Whereas the inherent anisotrovv o0 composites reinerce• r.

continuous fibres can provide an exceptionai perrorrnanr e r
the directions of the fibres in the wa% or unsuroased s'":- ý

* • ry "'basistrength and stiffness. they aiso Dose a faiience n rc ".e=•. ~ Dry 'S' basis " .- s -r -ictural des:,7n cr w ho has (,o allo w !or teic! ince ýt?,c

transverse and matrix-domrnaaec direc::ons. ThCe ;S:•-:
r ost acute for PMCs where the rarios o: eiastic strenv. ano

. iracrure toughness, thermal and leiiniiai propert•eý ;re noz

C extreme. Consequently, the damaige accumulation iara"
istics are very different from the near-zsotroDoir mre•a:•
materials because oi the muhtiolci•v of potential taliure rnoce,.3 Wet typical

3 *e typical Deiamination, for example, is one faliure mechanism tha: .N

"" of particular concern in laminated PMCs and the high ra-t,
-•* of propagation charactenstic or this failure mode can o::e.
< have catastrophic consequences. In a typical graphite or

carbon epoxy composite even the transverse (in-piane: tensu'c
strength amounts to no more than a few percent ot Mc
longitudinal (fibre directiont tensile strengththeout-o!-Piane"tensile strength across a rypical multidirectional laminate :s

Wet '8' basis generally significandy lower.' In most advanced comtposites
I the early damage process comprises of an increase in the cracY

,o , too 200 300 density rather than the crack growth, for example, transverse
-10o 0 100 200 300 400 cracking of individual plies within a multidirectional laminate.

Temperature (*F) often referred to as first-ply failure. Following initial transverse
ply cracking, delaminations may eventually develop and can

Fig. 1 Effect of moisture and temperature on thetransverse be precipitated by the transverse ply cracks. Actualv.
tensile strength of unidirectional graphitetepoxy 1300:520 f transverse cracking may exist in the initial state, the cracKs

being caused during processing due to the mismatch in

Ply termination

Internal doubler
(ply termination)

* Manufacturing defects

Free edge (cut-outs e Out-of-plane loads
and bolted joints) (1) Applied loads or postbuckling

give rise to ozr,. TXZ. Try stresses

(2) Laminate geometry,
e.g., transitions, tapers. etc.

External doubler
(bonded joints)

r
rr CC-

Corner element

Tubular element
(environmental effects)

Fig 2 Delamination sources
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:3- thermomechanical properties between ad;acent plies, It is oricins o: a resear' etorT aiicr:nc tIhe industrI to tr`_
fortunate chat aitnough composites can be considcred to orien interestinn phenomenon. A-, Gcneral Dsnam;,s. dýrna. ,_

be a highly flawed structure, they are aiso a highly redundant the etnect oi stress Concentri:tion in boron .aIp
r- structure when in the form of fibre-dominated laminates of grapnite epox' laminates wa e.aiuated for bot- sa:.:,

hte f[:°, 45.'!9C0° family with at least IC' of the fibres in cVciIc load con:tions Vaitoups e. ai" suosequentit i 'u-
o, each of the referenced directions. lished this work proposing -he appicanorn or macros.op i

Very few systematic attempts have been made to appoy fracture mecharics to advancetd composite armnmates con~...,
damage mechanics to advanced composites, for example, small hoies or through-thickness narrow silts. Numerous

.u Poursartip. Ashbv and Beaumont.' In Ref. 4 a fatigue damage adaprations and variations embracing similar concep:s hase
o mechanics approach is developed for composites based on the appeared since that time, one notable example being the wori,

assumption of a reiationship between fatigue damage and of Whitnev and Nuismer.s Whilst these approaches have
changes in moduli of the composite laminate. The damage served the industry well they do not provide a great :ns-zgnt
growth rate is assumed to depend on the cyclic stress amplitude into the mechanisms of damage; such approaches also Impose

o, "cr' and on the current damage state 'D', hence: a heaw-v burden on testing and data collection.
A quantitative methodolog" addressing the ef-ect of

d D/dN = f(_17, D) ( notches on composite lamina:- performance in tension was
oo• In more recent work, the same authors include the load ratio developed by Kortschot and Beaumont' for the j9K° 2',
,O 'R':' Then laminate family. Selecting a double-edge-notched ,DEN

specimen, a two dimensional finite element idealtsation o! a
dD/dN = f(..a, R, D) (2) quarter-symmetric region of the specimen (oith two coupied

1s: For both situations the relationship between the fatigue layers of elements representing the C0 and 9K- layers, was

o5 damage scare 'D' and the change of stiffness is utilised in the used to demonstrate the significance of the longitudinal

is. form: splitting failure mechanism within the 0° layers. The split
length and delamination zone were hence predicted and

15 E = Eog(D) (3) compared with the experimental results from the x-ray

i56 which permits examination of the damaged region. Later, Spearing, et a,`
extended this work, using a similar approach, to a centre-

137 D = g-'(E/E0 ) (4) notched specimen initially confining their attention to tht
[90.Cjs laminate type. They similarly found a reasonable

15 Integration of Equations (1) and (2) provides an estimate of correlation between theory and experiment, and further
,so life 'Nf' once the damage accumulation function f(tla, R. D) extended the work to a limited evaluation of [ 0 , 450 ,9:0:
IQ has been determined. This function can be most directly laminates and to the tensile fatigue loading case. Predictions
16, obtained experimentally using ot the extent of cyclic-load-induced damage and ot the

I 1 dE resulting residual strength were also achieved and correlated
f(Aao, R, D) = (5) with experimental observations reasonably well.

g'[g-'(E/E0 )j Ea d1V It is of particular interest to recognise that. since all the

163 By varying each of 1cr, R and D in turn and holding the work reported in Refs 9 and 10 was confined to monotonic

I" other two variables constant, the results may be plotted and static tension and fatigue loading, the C' layers will consistently

,os the function f(A•r, R, D) determined. Both Refs 4 and 5 experience transverse tensile stresses because of a mismatch
,,M include examples demonstrating the application to glass/epoxy in the Poisson ratio between the 00 and 900 layers as well as

W•, and carboniepoxy composite laminates and showing an the residual time-dependent tensile stresses caused by the
IM acceptable correlation with experiments, reduction in temperature from the cure state in coniunction

,1 Poursartip and Beaumont" extend the damage mechanics with the large mismatch in coefficient of thermal expansion

approach developed in Ref. 5 to predict the fatigue life for (CTE) between the C' and 90C orientation. Consequently.
III variable-load cycling. Although these predictions are less locally elevated axial stresses the vicinity of notches and

.7! satisfactory than for the constant-amplitude cases, they are holes will promote a splitting of the 0C layers and this wi•l
,,3 shown to be far superior to Miner's rule predictions. It is be exacerbated by the transverse tension and in-plane shear

,. noteworthy that in all the work reported in Refs 5 and 6 created by the discontinuity. Also noteworthy is the fact that

,- delaminations originating at the specimen edges, induced by such a reasonable agreement with the experimental data was
I't in-plane tension loading, is the principle damage mechanism. artained with a two-dimensional finite-element modelIrg
1, and the translaminar crackingidebonding etc that occurs technique. One presumes that the three-dimensional stress

behind the delamination front becomes more extensive after state existng in the viciity of notches and spcc:men
,' delamination. This observation raises the question of the edges results in a condition wherein the out-ot-plane stress

effects of finite specimen width, which is briefly anticipated components have a small effect relative to the in-plane splitting

in Ref. 5 as a simple size effect: mechanism, at least for the laminate configurations studied.
In other research conducted at Cambridge. Soutis and

(dD\ ) , (ID) Fleck" studied compression failure and damage mechanisms
W= dD (6) in PMC laminates with and without holes. They demonstrated

that microbuckling of fibres in the ^' layers was the dominant
,I" where w, and w. represent different widths of a given laminate failure mechanism based on both theory and experimental
,I" configuration. observations including x-ray evaluations. Using a tracture
I This feature is vitally Important to the composite hardware toughness modelling technique. a quantitative and quaiitatoie
,. designer and deserves closer attention in future studies, correlation was successfully obtained. Some compression
'A, Turning now to a related and also a key aspect of design, fatigue testing was also conducted and for laminates with
'M that is the manner in which a material reacts to the presence holes and notches indicated the development of a similar rtypc

of stress concentrators such as holes or notches, we cite the of splitting and delamination damage mechanism to that tound



with the static tension and fatigue testing of notched Damage tolerance methodology
:5- laminates."' A threshoid value of 85% of the notched static The damage tolerance phiiosovhv assumes tha: the lare:,,:
:511 compression failure load was found for compression tatigue. undeectabie flaw exists at the most cntical location in•nh,
• For load levels below this threshold, there appeared to be no structure and that the structura. ,ntegri is rnairitanc2

strong fatigue effects. Here again though, only a limited throuchout the flaw growth until detected bs prth)&,
:h , lam inate configura tion w as studied, that is j 4 ,' Z s, and it t .ro choun te

a is of interest to compare the similarity of the initial loaded I. this avproach the damacc oierance cavabi:r o
:&i stress state for compression on this laminate with that both the tlaw" growth potential and the residual strencrn is

experienced by .he '9ZZ 0  laminate under tensile load. Note verified by both anajvsis and test. Analyses woulO assume
: that both the residual-stress state and the compression load

the presence of flaw damage pIaced at te most untavOur3-_e
• will develop transverse tensile stresses in the 3 layers because location and onentation with respect to appiied loads and
:.C of CTE and Poisson ratio mismatches, respectively, between materal properes. The assessment ot each componen shuid

S the "45' and ZO layers. iciude areas of high strain. strain concentrations, a minmum

margin of safen details, a major load path. darnace-pronc
areas, and special inspection areas. The structure sciccred as

Review of certification methodologies critical by this review should be considered for inclusion ;n
the experimental and test validation ot the damage toierance

Certification procedures for composite structures generally substantiation procedures. Those structural areas identinfed as
include static strength. fatigue, durability and damage toler- critical after the analytical and experimental screening shou!l
ance, all of which rely on a comprehensive appreciation of form the basis for the subcomponent and full-scale component

.-M failure modes, the effect of variability, environment and vaiidation test program. Test data on the coupon, eiement.
r4, discontinuities caused by notches, holes with or without detail subcomponent, and full-scale component level, whciic-
."s fasteners, and damage induced by impact, machining or ever is applicable, should be developed or be available to,

assembly phenomena. The current state of the art lacks a
r definitive approach for certifying or qualifying composite 1) verify the capability of the analysis procedure to predict

n• structures and an absence of a consensus by the various damage growth/no growth, and residual strength.

.i• agencies, civilian or military. 2) determine the effects of environmental factors;

A basic element of any certification or qualification 3) determine the effects of repeated loads-
ZIP procedure is design development/verification testing which
!: assesses and validates the design of critical hardware features. Flaws and damage will be assumed to exist initially in the

Ws For composite structures this development testing effort is a structure as a result of the manufacturing process or to occur

21 particularly crucial part of the certification because of the at the most adverse time after entry into service.

:•s sensitivity of laminated composites to out-of-plane loading A decision to employ proof testing must take the
Sand the consequent multiplicity of potential failure modes, following factors into consideration.

Recently, the process has been termed the 'building block (A) The loading that is applied must accurately simulate
Sapproach' (Ref. 12) and is initiated during the design and the peak stresses and stress distributions in the area

analysis phase wherein critical areas of the structure are being evaluated.
.', selected for test verification. The critical features of the (B) The effect of the proof loading on other areas of the
NI strength are therefore isolated in the form of small test structure must be thoroughly evaluated.
'o articles of progressively increasing complexity. The effect of (C) Local effects must be taken into account in determining

•s environment on these localized regions or 'hot spots' are also the maximum possible initial flaw/damage size atter

~. assessed using these economical subscale test articles. The testing and in determining the subsequent flaw/damante
.,• nature of design development/verification testing is illustrated growth.

in Fig. 3 for typical aircraft structural hardware. Obviously, the
. process of certification poses especially challenging problems in The most probable life-limiting failure experienced in com-
_ the case of structural hardware that contain design details that posite structure, and particularly in non-planar structures

are susceptible to significant interlaminar or out-of-plane where interlaminar stresses are present, is delamination
stresses such as the details illustrated in Fig. 2. All too growth. Potential initiation sites are free edges, bolt holes, and

,"I frequently, the effect of such local details are identified very ply terminations (Fig. 2) in addition to existing manufacturing
ýe late in the design cycle and this experience contributes in defects and subsequent impact damage. Hence, an analysis
%0 large part to the fading of early optimism for new materials, technique for the evaluation of growth.no growth of delam•-

Furthermore, the structural analysis performed has rarely nations is an essential tool for the evaluation of the damage
Vs been made in sufficient detail to evaluate adequately the effect tolerance of composite structures. A numerical method is
4. of these interlaminar stresses on potential failure modes and availble through the use of finite-element analysis and the
,- margins of safety. Being influenced by matrix properties with crack closure integral technique from fracture mechanics."
• a strong dependence on processing conditions and the Prerequisites for an evaluation are:

environment, they are also susceptible to a large statistical
,to scatter and to cyclic loading effects. Non-destructive evaluation 1) a structural analysis made in sufficient detail to indi..atc
,II of these regions can also prove difficult with respect to the the locations where the critical interlaminar stresses

detection and evaluation of d'fects. exist,
Three candidate certification approaches are now con- 2) experimentally based critical interlaminar strain energy .

sidered with a view to defining technological gaps: release rates G1 ,, CGi, and a subcritical growth law.
that is da/dN against AG ior each mode, and

1 1) damage tolerance, 3) a mixed mode I/mode II fracture crntena.

i,8 2) safe life Ireliabilirv,
in 3) wearout model. The application of the damage tolerance methodoiogv to
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is Fig. 3 Building block approach

W1 the F-16 production .eer management program is described composite structure test programs where tests conducted in
3 in Ref. 15. The test specimens used to generate the required different environments may be combined. Statistical signifi-

i mode-I and mode-I! fracture toughness parameters are also cance tests are used in these cases to check data sets for
"" described. The application of this approach requires a similarity.

significant analysis and test effort to evaluate 'hot spots' The following paragraphs present a review of the statistical
1 within the structure and to generate the necessary fracture certification method oi Ref. 17. The development tests
N? toughness data. The delamination growth assessment also required to generate the behavioural database are outlined.

requires a considerable 3D finite-element modelling and followed by a discussion of the specific requirements for static
analysis effort. In addition, no reliable mixed-mode fracture strength and fatigue life testing. Special attention is given to

.1i criteria has been reported. Hence, this approach is not the effect that matrix and fibre-dominated failure modes have
Ai considered sufficiently mature to warrant a recommendation on test requirements.
.Y for a general application to the certification of developmental A key to the successful application of a statistical
,+ composite hardware. certification methodology is the generation of a sufficiently

complete database. The tests must range from the level of
Safe life/reliability methodology coupons and elements to full-scale test articles in a 'building

.t, Statistically based certification methodologies, as exemplified block' approach. Additionally, the test program must examine
by Ref. 17, provide a means for determining the strength, the effects oi the operating environment (temperature, moist-

Ar life, and reliability of composite structures. Such methods ure, etc) on static and fatigue behaviour. The coupon and
.W rely on the correct choice of population models and the subelement tests are used to establish the variability of the
.0 generation of a sufficient behavioural database. Of the available material properties. Although they typically focus on the in-
,,0 models, the most commonly accepted for both static and plane behaviour it is also important to include the transverse
,,, fatigue testing is the two-parameter Weibull distribution. It properties. This is especially important in the case of research
,I. is attractive for a number of reasons: and development programs. The resulting data can be pooled
41& 1) its simple functional form is easily manipulated; as required and estimates of the Weibull parameters made.
416 2) itnsosimple functpooional fo niqs aeal maniplaled; Thus, the level and scatter of the possibie failure modes

, 2) censoring and pooling techniques are available; can be established. The transverse data are characterized bs'
41,1 3) statistical significance tests have been verified.cabestlihdTetrnvseaaaecaatrzd6%the highest degree of scatter. Element and subcomponent tests

can be used to identify the structural failure modes. They
, The cumulative probability, of the survival function is given may also be used to detect the presence of competing failure

,.e by modes. Higher level tests, such as tests of components, can

iti Ps(x) = exp((-x/0)"s] (7) be used to investigate the variability of the strucrural response
resulting from fabrication techniques. The resulting database

I:: where Qs is the shape parameter and 5 is the scale parameter. should describe, to the desired level of confidence, the laiiure
.+J For composite materials Q and 0 are typically determined mode, the data scatter, and the response vanabilirv oi a
,:j using the maximum-likelihood method. In addition, the composite structure. This data along with full-scale test articles
'15 availability of pooling techniques is especially useful in can be used in the argument to justify certification-
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Out-of-plane failure modes can complicate generation of
• u the database. Well proven and reliable transverse test methods

are few. The typically high data scatter makes higher numbers
W of tests desirable. Also, the increased environmental sensitivity

in the thickness direction can cause failure mode changes.
negating the ability to pool data and possibly resuing in 25

competing failure modes. Thus, a design whose structural
• capabilitv is limittd by transverse strength can lead to increased

testing requirements and certification difficulties.
The static, strength of a composite structure is typically 20

, demonstrated by a test to design the ultimate load (DULX
,7 which is 1.5 times the maximum operating load; that is the .
474 design limit load (DLL). Figure 4 shows the reliability 0

411 achieved for a single static ultimate test to 15C. of the DLL
os for values of the static strength shape parameter from C to
,- 25. For fibre-dominated failure with as values near 20, such
,m a test would demonstrate an A-basis. However, for matrix-
4 dominated failure modes, with ranging from five to ten, a

test to 150% of the DLL would not demonstrate the A-basis. 10

1 , In fact, for values of as below seven, reliability in the B-basis
,2 could not be demonstrated. Two options are available to
W increase the demonstrated reliabiliti: (1) increase the number
4, of rest specimens, or (2) increase the load level. The most 5
,5 effective choice is to increase the load level beyond 150% of
,f the DLL, whereas increasing the number of test specimens
*7 yields little benefit and is expensive. .I
SThe two most applicable methods of statistical certification I I ! I I !
An approaches for fatigue are the life factor (also known as the 0 1 2 3 a 5 6 7 a 9 10"
Sscatter factor) and the load enhancement factor. The life factor Fatigue life shape parameter,
44, approach relies on knowledge of the fatigue life scatter factor
ýz from the development test program and a full-scale test or Fig. 5 Plot of the life factor required to demonstrate the
Mi tests. The factor gives the number of lives that must be reliability of the B-basis results at the end of one life against

demonstrated in tests to yield a given level of reliability at the fatigue life shape parameter using a single full-scale test

Sthe end of one life. article

A plot of life factor N, against the f-itigue life shape
• € parameter CIL is given in Fig. 5 for a typical scenario. A single
- full-scale test to demonstrate the reliability of the B basis case of in-plane fatigue failure (OI. = 1.25). Although few

(p = 0.90, y = 0.95) at the end of one life is to be conducted. data for transverse fatigue are available, other than perhaps
•, The curve shows that as the shape parameter approaches 1.0, for bonded parts, it is reasonable to assume that the value of
3oi the number of lives rapidly becomes excessive. Such is the the shape parameter will be the same or less. Hence. it is

apparent that the life factor approach is not acceptable for
1...... the certification of composites, especially where out-of-plane

1.0 - failure modes are dominantSA-basis allowable
A-bais llowbleAn alternate appnt.: to life certification is the load

enhancement factor. v tCrein the loads are increased during
0.9 the fatigue test to demonstrate the desired level of reliability.

a-basis allowable Figure 6 illustrates the effect of the fatigue life shape parameter
CaI and the residual-strength shape parameter oR on the
load enhancement factor F required to demonstrate B-basis

o.8 reliabilirv for one life using a single full-scale fatigue test to
"one lifetime. It obvious that the required factor does not
change signific .. iv for fatigue life shape parameters in the
range of five to ten. However, as the shape parameterS0.7
approaches 1.0, as is the case for composites, the required
load enhancement factor increases noticeably, especially for
small values of the residual-strength shape parameter. Tims

0.6 curve illustrates well the potential problems that may arise
from dominant out-of-plane failure modes. Such failure modes
tend to have low values of oL (near 1.0) and also low values
of ap (in the range from 5.0 to 10.0). These values would

0.S 0 is 2 25 make the required load enhancement factors prohibitively
large. It is evident that for failure modes that exhibit a high

Static strength shape parameter. o S degree of static and fatigue scatter, the life factor and load

" I "ig. 4 Plot of the 95% confidence reliability against the static enhancement factor approaches can result in impossible test

21 :rength shape parameter for a single full-scale static test to requirements. A combined approach can be achieved through
150% of the design limit load the manipulation of the functional expressions. The resulting
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However. the test requirements far matrix -domin tred fr aiure
are more severe. Over the range of life factor from one to
five Elhe load enhancement factor ranges from 1.4 dow0 to

L 1. 19- An environmental knockdown factor would furner

" aL complicate the test of a matrix-dominated failure- Such a
L factor must be combined with the load enhancement tactor

S.to yield the required test load level- As is well known in
1.6 composites, the adverse effects of environment on matrix

CIL=5 properties is much more severe than on fibre-dominated
properties and the resulting factor may be si'niocant.

1.4 -Further illustration of the problems induced by matrix-
Sdominated failure is possible by assuming a limit exists on

the load enhancement factor. Such limits may exist because
0 of failure mode transitions at higher load levels. For instance.

.1.2 assuming a load enhancement factor of 1.2 is the maximum
allowable value, it is obvious that a successful one-lifetime
test for a fibre-dominated failure will demonstrate the

1.0 t reliability better than a B-basis test. For matrix-dominated
0 5 t0 1s 20 25 failure, the same reliability would require a test duration of

about 4.5 lives.
Residual strength shape parameter, R Two key aspects to the statistical certification method-

3: ology are the generation of an adequate database and the
33 Fig. 6 Plot of the load enhancement factor required to demon-
3, strate the reliability of the B-basis results at the end of one life proper execution of a full-scale demonstration test. The
15 against the residual strength shape parameter for three values development test program must be conducted in a 'bui!d:ng
36 of fatigue life shape parameter OL using a single fatigue test block' approach that produces confident knowledge of the
37 to one lifetime material shape parameters, environmental effects, failure

modes and response variability. Perhaps the most important
result should be the ability to predict the failure mode and

Un method allows some latitude in balancing the test duration know the scatter associated with it. Structures that exhibit
533 and the load enhancement factor to demonstrate a desired transverse failures, which can result in competing modes and
Js3 level of reliability, a high degree of scatter, may render the application of
5 Figure 7 gives the curves of load enhancement factor this fatigue methodology impractical. This result has been -

96 against life factor for the cases of fibre- and matrix-dominated illustrated by the effect of shape parameters on both the static
337 failure. Typical values for the fatigue life and residual strength and fatigue test requirements. The requirements clearly show .
3 shape parameter were employed. The curves show the possible that a well designed structure that exhibits fibre-dominated --
,19 combinations of life factor (or test duration) and load failure modes will be more easily certified than one constrained
U, enhancement factor to demonstrate the B-basis reliability at by matrix-dominated effects.
s41 the end of one lifetime using a single full-scale fatigue test
.12: article. The curve for fibre-dominated failure modes exhibits Wearout methodology

3 quite reasonable values of life factor and load enhancement The wearout methodology was developed in the early 1977s
sý factor. For test durations ranging from one to five lifetimes, and is comprehensively summarized in Ref. 19 by Halpin.
545 the load enhancement factor ranges from 1.18 down to 1.06. and i o hnsin. sumed wa Reviouslpise

Jerina and Johnson. This methodology was previously used '

in the certification of the following composite aircraft
2.0 components:

I) the A-7 outer wing,
2) the F-16 empennage,

_• 3) the B-IA horizontal tail.

In essence, the wearout approach recognizes the prob-1.6 ability of progressive structural deterioration of a composite
Matrix-dominated failure (a 1.0. a 10) structure. The approach utilizes the development test data on

the static strength and the residual strength, after a specified
period of use, in conjunction with proof testing of all flight25i = 1.20, hardware items to characterize this deterioration and protect -,

. R - the structure against premature failures. It has become evident
that the residual stiffness is an indicator of the extent of the
structural deterioration and can be an important performance -

1.0 0 5 10 • • parameter with regard to the natural frequences of oscillation --

0 10 is 20 25 30 of the aerodynamic surfaces. Thus, in some instances. it may

Life factor be prudent to incorporate a residual-stiffness requirement in -

an adopted methodology to evaluate the tolerance of the
Fig. 7 Plot of possible combinations of load enhancement structure to component stiffness degradation. -•

,: factor and life factor necessary to Jemonstrate the reliability The difficulties in the implementation of the methodolog.,
.; of the a-basis results at the end of one lifetime using a single

full-scale test article for matrix- and fibre-dominated failure include the determination of the critical load conditions to be
,s modes applied for static and residual strength and stiffness testingI

Int J Fatige eoee* 1992 7



and for the proof load specification, Similar difficulties would A residual stiffness test should also be inLorporated in

arise in the case of all candidate methodologies considered (2) for the reasons noted earlier.

41, here and indeed emphasize the importance of a representative Ih Is apparent from the above discussion thar a rehabte

W structural analysis. However, the advantage of the wearout estimation of the damag~e accumuiation rate R is thi ke% :n

,16 approach for advanced composite hardware development the appropriate application or the wearout methodoioeg Six:c

ht projects resides in the ability to assign 'gates' for sate iignt R depends on the parameter r. data pertaining to the detai,eu
,,, testing as the flight envelope is progressiveiy expanded. conngurations and failure modes of the hardware components

in question must be obtained. Now. it has been mentioned
hN Proof test philosophyI previousl' that a distinct likelihood of matr:x-conrtroi!ed

1.- The truncation in static and residual strcrtnir, and llire cafiac,'V tailure modes exists in complex developmental corr'1,ie

•; resulting from proof testing is intended to develop confidence hardware and we therefore consider that -re !aniure mr,,_c

Sthat the structure is unlikely to tail within a specinied time encountered in bonded toinms under fatigue loading shou~c

Si under a specified usage. Most of the essential features of the exhibit similar characteristics to that of the dlamrniation oi
•:. wearout process are illustrated in Fig. S. Mathematically, the advanced composite structures. Understandabiv. then, a

` structural deterioration can be represented by the equation wearout model database exists and other data are a~aliat ¢

c• from Ref. 19: that may be recast into wearour model parameters We shah
return to this subiect in the exper:mental surv'eyara:',s's

.) -= F(C)2•-• - (r - I),F..)-"[! - () section.S~(S)
implementation of the wearout methodology

6.-9 where F(t) is the residual strength after time 'T. F(0) is Lhe
,W initial static strength, F__ is the maximum fatigue spectrum The application of the 'wearour' philosophy to developmental

&31 stress (failure occurs when F(r) = F,,,,) and A is a constant, composite hardware projects seems to be feasible. The Kev

The key wearout parameter ir' is defined as the slope of tasks necessary to implement the methodolog, are depicted

,3 the daldN. curve or may be derived from the S-N fatigue in Fig. 8 and can be summarized as follows.

1, curve for the failure mode in question. Based on this model, I) Prescribe a best estimate of the usage spectrum.

&35 the proof load level required to protect the structure for the including the duration 'to,', or various multiples
M desired operating period tp can be deduced as follows: thereof, to represent phases of the flight test program.

Setting F() FpL, and using F(t) =F(xx), we obtain: 2) Based on an adequate structural analysis of the critical

F',-it = F(xx)2 "-• + R op (9) loading conditions specify a static strength requirement
PL- P and conduct a static strength test to failure for the

1,, where condition deemed to be most critical.

3) Incorporating damage tolerance criteria supported by

R (r- l)A. (Fr)a (10) non-destructive inspection (NDI), conduct a fatigue

'ii and is termed the 'damage accumulation rate' or 'wearout test based on the usage spectrum.

,.,2 rate'. 4) Conduct a residual strength, and sriiiness revt ro

M A minimum of two tests is required to determine the failure of the fatigued component, drawing again on

Swearout rate R: the static strength requirement defined above.

S1) a static test to failure, 5) Estimate an 'damage accumulation' rate through a
series of tests of critical subelements (identified by the

2) a fatigue test tollowed by a residual strength test to structural evaluation) and/or coupons. These tests -.

should provide estimates of the wearout parameter '-'.
6) Conduct a proof test of each flight hardware component .

to a level deduced from items I to 5.

Tr uncation Experimental survey/analysis
level In our previous discussion on wearout methodology, we

referred to the existence of a wearout model database that
S,"an be extracted from the large body of literature on PMCs.

S- load These data appear in a directly relatable format
1  

or can be

1 ' JX Xrecast in a common form from recent sources such as

- - - Poursartin er ai-' or from contemporary composite fracture
£ mechan'r• parameters used to define damage or damage

grow- .;ch as delamination. "' By observing that ,.he

failure mats.-x-dorrinated failure mechanisms of delamination and
' T compression represent phenomena that closely resemble the

÷ • ~failure mechanisms exhibited by adhesively bonded joints:: -

21 we may draw on an even larger database.
Fatigue Review of theoretical foundations of wearout

concepts

STime Birtore studyin the overall database it is first appropriate to

Fig. 8 Essential features of the 'wearout model' reiating static review the physical and theoretical basis for the wsearout
sW faiture, load history and fatigue failure concepts. As preliouslv stated the probability of progressive
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•j,~ structural deterioration of a composite structure is recognized into .,. The spectrum intensity parameter, A., must anr does
and forms the essential ingredient of the wearout phdosophy. appear explicitdy, however, to account tor varlatto.s ;n.

By combining several basic assumptions regarding the spectrum intensity.
-• behaviour of a composite structure under load with basic Completing the integration:
.,s Weibull statistics the 'kinetic fracture model' can be derived.

71 This model serves to assist us in predicting the 'fatigue at-"
- wearout behaviour' of composite structures. 1 -

-The first assumption concerns the growth of an inherent Theretore
-., or real material flaw, daidt, which is deemed to be

proportional to the strain energy release rate G of the material aft)-"i- I- ar- i)A, .'t - ;1b
- system raised to some power ?, where r is to be determined

.• experimentally; thus Finally, assuming that linear fracture mechanics theor-' aptiies

to composite structures we write
-8• da/dt x G' 11

.: where a is the flaw length.
SAs the cyclic load, F(t), is applied to the flawed body, and

"I, the internally stored strain energy will occasionally exceed a = (K21w r7 17,
'm the critical level required to overcome the local resistance of
'3 the material to flaw growth. or damage accumulation, and Substituting Equation (17) into Equation (16):
-1 flaw growth will occur. Then, according to the basic theory r -- ,)_
"1! of Griffith the strain energy release rate for the material is _ - 1)A, A4 (t - to) (18i
,• proportional to the stored strain energy U and the flaw length Note here that the constants K and sin have been absorbed
•, a. into the constant A.. Equation (18) describes mathematically

"Then. since G 2 aU we obtain the strength of the ith specimen. tr,(t), as a function of time
and its initial strength at time to, u-,. The right-hand side of

da/dt nc U'a' (12) Equation (18) represents the wearout or strength degradation

,,0 We note that the foregoing applies to the ideal situation of a that occurs during the time interval to -' t. The flaw growth
1,, cracked solid containing a crack that extends in a self-similar exponent r and the history constant A, must all be determined
742 manner, typically a mode-I condition. Clearly, the more from the experimental data.
-j complex conditions existing in a highly orthotropic, hetero- To describe how the distribution of strengths for a

"geneous body may give rise to different forms of the number of tests changes with time we consider a series of
745 relationship, specimens that has the distribution of static strengths a(40) at
,4 However, for our present purpose we shall retain the time r = 0, see Fig. 9(a). Assuming that each specimen is
-,, above and also assume that the spectrum load levels and subjected to a fatigue loading described as A,F,,,(t) over a

frequencies are selected based on a given aircraft spectrum time duration I the change in the above distribution may be
In loading. The same random sequence is taken to be applicable obtained as a function of time. The resultirn; tsec-dependent
"Is• to each specimen. strength trajectory of specimen i is also illustrated in Fig.
,31 The only variable regarding the applied load history then, 9(a). The equation of the residual-strength wearout trajectory
s1: is the spectrum intensity parameter, A,, which relates to the a`, - s,,, is given by the equation:
715 reference aircraft spectrum, F,,f(t), and the experimentally (
3., applied load history, F(t). Hence (r

1$5 F(t) = A, Ff(t) (13) Note that whilst the strength tralectories of each of the T
specimens (I t i _ n) are not necessarily parallel, the relative

'• where A, is a constant. By substituting Equation (13) into position of their static strengths does not change. As a result,
,S7 Equation (12): the percentage of specimens with static strengths greater than

"• da/dt A,, F•,,(t) a' (14) that of the ith specimen at t = 0. 0r0,, is the same as the
percentage of specimens with static strengths greater than that

:5 or of the ith specimen at time r. a_,, that is the shaded regions
shown in Fig. 9(a) both have the same arca.

7W da/dt AaA, F;,r(t)a" (15) If we now consider the prediction of the percentage of

%, where A2 represents a constant that accounts for the constants specimens, it time I, which have a static stng-h greater than
S of proportionality and the prior history. some arbitrary value a', given the distribution of static

,By integrating Equation (15) from some initial time strengths at time t = 0 in terms of the Weibull parameters.
, to some later time t, we can keep track of the flaw length oiý, 03, refer to Fig. 9(b).

".1 a(t), where a(t 0) = a0 . Thus: Recall that the percentage of specimens having static
strengths greater than a' at time to is given by

a-da J A 2 A. F;,(t) dr = A3 A, dt P[cr(O) > '] =exp(- cra'/BO)y
to Since the relative position of the specimens in the two

"h, since F,,d(t) is assumed to be a stationary random process. distributions does not change in going from a(C) to art), it
"-• For a stationary random process the amount of crack growth follows that

or damage accumulation is not a function of the details of
S .s the load history. Damage accumulation is merely proportional Pie) > a'] P[r(C) > a] (21)
-, to the exposure time at. Thus. F,,(t) can be treated as a by tracing the path of a backwards in time. Then, by
- constant for the purposes of integration and can be absorbed combining Equations (20) and (21):
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0. on -(C0 l( t) To determine the time required at a given spectrum
-o C f7' intensity A,, before the probability of survival is reduced tu

0°20 some value P we can assume a value lor the latter and soi,.e
10 a for r& from Equation (26). Hence,

T___e__-- ____-__-________ In P....._o___"__.....
o 2t

a Time

._ Co) A =(r- t) .4;1.r

- (U and

S- - In P) , - ( a.' ) ,_,

_[A, A,(r- I)

0 t Now the distribution of fatigue failures can be represened
b Time on the same graph as the static residual strengths, along a

horizontal line drawn at the maximum load level produced
during the fatigue spectrum F_,= (see Fig. 9(c))- As the

•0•0.IDI •,oA1 Ott residual strength of a specimen falls below the F_,, leveL.
0 "o failure is likely to occur at any time, so that all trajectories

end at this point.
"Application of the wearout model requires a minimum

"of four sets of statistical data:SFmax - - - - - - - - - - - - --

(i) data describing the static strength distributions at both
,_ _ _ _ _ _time r = 0 and at some later time t,

0 ti f2 t3 (ii) two sets of fatigue failure data,
C Time which would be sufficient to define the constants x, :., r

Fig. 9 Features of residual strength and life comprising the and A. that appear in Equations (26) and (28). The spectrum
is wearout model; (a)l residual strength as a function of fatigue intensity parameter, A., would be held constant for the two
16 exposure; lb). trace of residual strength of specimen a' back
57 to time t = 0; (c). overall wearout modeel rsidual-strength tests and one of the fatigue tests. The ocher

fatigue test would be run at two other intensity levels,
resulting in a a against N plot, from which the exponent

AU Pier(t) > c') = exp(- r/030)"c (22) could be calculated. The method of solution for calculating
these various constants is an iterative procedure for which

SThe trajectory of the specimen having a static strength many standard routines are available to facilitate rapid
Sequal to a at time t = 0 and strei.gth &r' at time t can be data reduction. Such routines are capable of automatically
,3, expressed as generating diagrams similar to that illustrated in Fig. 9(c).

) - =Other relationships have been proposed" relating the
,1 ("'-)a - = (r-1)A',A4(t-r0 ) (23) initial static strength shape parameter ao and the fatigue life
-)3 from Equation (18). Rearranging this we obtain that shape parameter af. It is of particular interest to observe that

these shape parameters, which can also be applied to the
or = [((o)a)2("- + (r - I ) A, A4 t] - (24) study of creep phenomena, are shown to be a function of the"

Therefore, by combining Equations (22) and (24) the flaw size exponent alone.

percentage of specimens that have a static strength a(t) > a' co 2r 4- 1 (29a)
107 can be expressed as

f=(2-..
4 P[fa(t) > r],= However, the relationship that will be of specific interest

/ep [(o)'-') + (r- 1) A, A, r]t/"2'-'.- to this subject is the experimental survey result from the
exp( . (25) postulate" that a material may lose strength at a uniform rate

with respect to a logarithmic (or number of cycles) scale.
wo or Thus. from

., P[a(t) > t Fg = B orNFg = B, .

(a' )2(') + (r-I) A;) A At A (-I where -= - 1/2r defines the slope of the fatigue curve.

•2 exp -'-' (26) Review of composites and bonded joint data
P[a(t) > cr') represents the probability of survival for Various expressions have been proposed for the application

an applied toad of magnitude a' at time r. Based on Equation to fatigue degradation and damage accumulation predictions
U1 (26) a complete family of trajectories and residual-strength of composites. In the previous section we reviewed the

distributions can be generated for any time t. A series of such wearout approach that is based on the relationship:
., distributions for times t = C, t,r, t and t, are illustrated in

,4 Fig. 9(c). aa/at = AG° (31)
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Subsequently, assumptions were introduced regarding the the associated fatigue life prediction ternioques hae i'ecn
,5 relationship between the strain energy re!ease rate C and the reviewed.

tlaw size a in order to derive the basic wearout equation. Although fundamental differences beveen the s•r-j:,urai
The fracture mechanics approaches that appear to have behaviour or PMCs and CMCs exist the prospects o! soene

, been introduced initially to address the structural incegrit-v similar approaches to damage state prediction are consitered
and reliability of adhesively bonded joints are sounded on a to be wor-hv or future evaluation. To this end. tre carnage
similar relationship: mechanIcs approaches developed at Cambr:dge by Beaumcn:.

Ashby, and co-;vorkers, appear :o be potent:ai!-v arI:.'-
daidN = B(AK)2' = AF(AG)' (32) approaches for CMC damage accumulation and tatigue Jie

where AK and "CG are the cicdic range of stress intensity and prediction.

ý1) strain energy release rate. respectively. Returning to the subiect of PMCs, the teneral o'errav

More recently the damage-based fatigue model devised between damage mechanics ard fracture mechanics sui::e5rs

by PoursarTip er .1"- has been applied to composite laminates that interrelationships exist wherein the microdamace asses$-

.,. resulting in the expression: ment of discrete interlaminar defects might be penormed.
Indeed such strategies may also be appropriate for CMCi.

dDid, = AD(Aar) 2 ' = ADFACG)" (33) One specific area that is of considerable interest to the design

418 where D the extent of the accumulated damage is clearly communitv is associated with the finite-width effect that was
very briefly addD bh extent et 41. A systematac

,,0 related to the flaw size (length) represented by Equations ' b y ressed by Poursartip etaa.5 A svstematcscientific evaluation of this effect is strongly recommended in
M - (31) and (32). Acr is the stress range that can be related to futuen conside ration s.

V, stress intensity and hence strain energy release rate via the tuture considerations.
A striking similarity between the flaw or, more precisely.

damage growth rate exponents for matrix-dominated mechan-

= , EG, _K, isms is evident from the review of experimental surveys and

-" = (34) analyses; see Table 1. In most of the widely ranging damage
\ Tra phenomena interlaminar separation represented the generically

V4 To assist our efforts to draw on the data from each of the similar feature for composite delaminations and adhesively

,2o above approaches we have used a common symbol r for the bonded attachments between composite and/or metallic

V. flaw (or damage) growth rate exponent. Consequently, in adherends. Since, future reductions in composite manufactur-

9, view of the relationship of Equation (34) the expression for ing costs will depend on the reliability of cocured subassembl-

Sthe damage growth rate dD/dN has been modified in Equation ies, the structural integrity of this category of interfacial
(33). damage mechanism will become a critical issue that is well

• The comparisons drawn from a very broad range of worthy of further research. This research area should be -

,-It literature are provided in Table L. extended to the design features that are commonplace in -

composite hardware such as tapers and transitions-' - and
V3, Final remarks local curvatures as well as through-thickness penetrations,

discontinuities and bolted connections.

W3 The subject of damage sources and damage accumulation in Finally, there is also merit in re-evaluating the uti!irv- of
..U composite systems has been discussed herein and various the wearout model in light of recent developments and where
43 approaches to the certification of composite structures and the likelihood of a change of failure mode exists owing to

Table 1. Comparison between damage growth rate exponents from various sources and configurations

Damage growth rate
Author, reference Configuration exponent r

:1 Halpin et aP 9  Matrix-dominated failure, t450 boron/epoxy 5.05

,5 Waddoups25  Graphite/epoxy-to-titanium double-lap bonded 4.70
joint

4 Poursartip et all" Carbon/epoxy i[451,'900 /0*]s laminates, cyclic 6.3-6.6*
V, tension

g Johnson and Mall 22  Graphite/epoxy bonded lap joints 4.34-4.55

Murri et a/ 2
3.

2
4 Glass/epoxy and graphite epoxy tapered 5.0-5.6*

laminates, cyclic tension
Brussat et a126  Adhesively bonded joints with metallic 5.03-5.57

A, adherends

Knauss2 7  Adhesively bonded joints with 5.75
metallic/composite adherends

O'Brien"' Glass/epoxy edge delamination specimen, 6.24*
t 450/00i'90']s

111f *Value determined from 5-N curve, based on Equation (30)
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C-. load cycling and/or environmental etfects. The damace S -tructijral Dynaimics an~d Aatertais Conference. Lake

~" mechan .ics concepts introduced by the recent Canimbridge Tanoce. USA. 1983

research efforts mayv serve to supplement the wearout Philos 13 MIL-A.PRIME (Proposed) United States Airlorce damage

r. oohv bs' contributing a quanriarive pediction catyb~r fo tolerance specification for organic matrix comrpos~te
aircraft stru.ctures', in Damage Tolerance of Cc.rnvostres

Ierdto (o -hne 'rsda tettlOigt .~: AFWAL-TR-87-3030 Vol i (USAF July 19881
S loadingý 14 Rybicki, E. F. and Kanninen. M. F. 'A finite eie-re-

calculation of stress intenst', factors by a mod~fec cracx

Acknowledgwement closure (integral' F'sg Mechl 9 11977) pp 931-938
r~Cfl~.~15~ Wilkins, 0_ J. 'A preliminary damage tolerance methrn

Wi:' wish to acknowledge tne rinanciai support 0t the clogy for composite structures', Proc W'orkshop on FJ, 4!re
.' Science and EntiengRsac onci~a rv~e h Analysis and.Mechanisms o1Failure ofFftnrous Composire

- opportunit' for Dr Keith T_ Kedward to asiume a ReseirchStuursNA..278 AA.12
'' Feliowship at Cambr .Lge. 16. O'Brien, T. K. 'Towards a damage tolerance philoSoohy

for composite materials and Structures NASA- TM. IC0548
(NASA, March 1988)
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A Direct Method for the
As rt~eso,~e Shakedown Analysis of Structures

:ecar~e.~i2;~U nder Sustained and Cyclic Loads
F. A. Leckie This paper presenis a strai ' hutorward itiethod for the direct deierminaimrw ol tho1

Pratesso- stead ' solutions in shakedown analisi~s. The direct method ",ar first propo(,ed trr
Departrnert o! Merharica, ane Zarkaefiat. This paper simiplifies this method by 'sho wini: that theitiodifiedihardertmne

Enwi'onrnerna' Enlieeir pararnietr, field can be direct/v fiound fromt the Yield condition and the incremnental
Universitv D! Calito'a,a residual stress. Thus, onh t wo elastic anali-ses are required to obtain ike .shaklertovsr

Santa Babaar CA 93106 solutlions without the need of perfortnmin a full-scale analv-sis. The two-barwsructu~re
and the tube problemn are solved as exramples to show4 the feaseihbti and etficeeni
of this approach.

I Introduction
The response of structures subjected to cyclic loads and permits a straightforward esaluation of the limit state of the

temperatures is often very complicated. The structure may structure on the basis of the elastic solution anid the first c ' cle
elastically shake down, or it may incur reversed plasticit% or of' the elastic-plastic calculation. Zarka's method takes ad-
ratchetting. Several fundamental questions can be raisedtThe \vantage of the fact that, in the cawe of elastic shalsedo%%n. the
existence of a steady state is usually of first concern. We then plastic strain is constant. Whenever reversed plasticitx occurs.
need to know when the shakedown will occur and what the hossever. the plastic strain varies ssith time and Zarka's metho.d
final steady stress-strain state will be. The theoretical inves- becomes complex. This paprC presents a simple method to!
tigation of all the possible responses and the evaluation of the the direct esaluation of the stead% solutions for all shakedovso
life of a comparatively complex structure can be very difficult, cases. The t~o-bar assembly and the tube problem are solsed
even if the c-eep effect is neglected in a first step analysis. The as examples. The feasibility and the effictenc% of ihc approach
computer, based on the finite element can help, but the nu- are obvious as compared to the conventional incremental
merical approach often turns out to be very expensive and method-
cannot yield a definite and accurate answer except for a small This paper concerns onls kinematic hardening materials..
number ofcycles because of accumulated computational error. since for such materials, a steadN state can alssass b,- reached
On the other hand, in practice the design is primarily based
on the maximum possible stress and strain attainable under rbe omlto
sustained and periodic loads, and thus a large amount of in- 2 Prbe Fomlto
cremental inelastic calculations approaching the steady state The total strain (is considered to he composed of ithrec
is often inev-itable. Note that Ainsworth (1977) has proposed parts. the elastic straiii t'. the thermal strain e 1 anid the pliixiic
a method to determine an upper bound on creep deformation ,,train
based on the complete steady state, cyclic stress distributions tr I I
of a similar structure that does not creep. Therefore, for prac-
tical purposes and as a way of getting out of the difficulty, The elastic strain i' relates to the current stress a througzh an
involved in detailed shakedown analysis for answering all elastic matri\ D:
shakedown quLron.*;,. the transient state of the structure can t" DO (21
be regarded as of less importance, and attention can be focused ýhl h lsi tant sasmdi)oc i:ascae
on the final stead-, solutions. 'hietepatcsri isaumdtoe heasiad

In 1978, Zarka .et al. first proposed a direct method w~hich plastic floss las'.%
qf

Contribuied hi. the Applied Nteehanrc.s Diisuior of THL Awifo~ peSWI% Srcw
OF SiF(JAsi(Ai E£'c~rvsrs for presenraiton at ihe 1992 ASNItt Summer M.cý \% herc .f is the yield function, and Xr is an inf initesimal scalat
chani., arnd Mateirial, Steeing. Tempt. AZ. Apr 28-Mra,. 1. 1992

r.isýussion on this paper should be addressed io the Technvcai Ldior. Prof factor. The creep strain is not considered here. An uppei hound
Leon'i ~tKerr. The- lehnologicai ntniiouie,.Northurstern ntn~ersirr, trannii' of the creep deformation can be estimated after the shakedom'n
11 602W- and '.ill be a~cepted iintii (our month% aire! final pubficaion (iti the solutions are obtained using Ains'.orth's method, lor c'amplc
p~rijr iiself in the JovitsAt Of APeiutri MicrHANIs Stanusrrri reccised b\ ihe Suppose that the material considered iolloms the kinematic
AWSL Appited %techanis Disision, June 29,1t990, final rcession. June Zf' 19 adnn ulTeyed odto s hngsn1satnto
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sk here ai iý the h a,:k stress. a Is, ca lled Ithe liarden In,. parameter.
w~hich Indicate, the current center o! the vield surta~c. Some

Jilt'erelitial relatlviii- have beer Oproposred dtriiatt

of the rate a o; the back stress. In fill, paper. %% e %\if us,. thc j

simpie'r. but r,, 'er evtensi'ei\ u~ed sariani*

t: rc H! 8 1, tkn ia I,,t is'~ c: ri I. ]O 5c n Iatir i . Vt , I, ai~ 11hu

Fig. I Possible division of the region Region S. incurs alternati~ng
=B 161r plasticity: region S; yields only during the heaeing. and region S, lieas

To :'orniuliae a direct approach, Zarkacei a:. i 19'>tlseparaied only during the cooling.

01V S:FeS, jind ofrairi in11o ,OW parts:

ýkhizre id. represents the pure]\ elasti,. solution ito the
current boundarN %alue problem, and (p. e) represent., the
residual stres' and strain. The rte,idual stress should be siati-
calls admissible with zero applied forces, and the residual strain Fig, 2 Yield surface. Stresses in region 5, hit the yield surface twice

should be kinematicalls adlmissible %%ith zero applied displace- in a complete cycle. Stresses in regions S; and Sj hit the yield surface

mnents. Generally. the% all var~ %rih time, only once and remain somewhere inside the yield surface during the

Zarka et al. next introduced a modified hardening parameter other halt cycles.

This nie\& tensor has no phy sical meaning, but w~ith it %% can fwcý- 60 lii

rewrite the yield condition. Eq. (41. as
fla"61) (9) and will be met only once in region S,:

and obtain a residual stress-strain relationship 4-&)=
e=(B-1 ±D)P+B- '&. (101 If( al, -ao< 0

Zarka's method is that, instead of soliinp a difficult plas-
ticit\ problem, he tried to find an & field such that at an\, lime and once in region S,:
the yield condition is satisfied. Then the residual solution (p,~ ~
e0 can be obtained by solving an elastic problem ksith homo- -( &<

geneous equilibrium equations and boundary conditions but (13
with nonhorr.'eeneous stress-strain relationships. After that, -&0=0

the actual solution can be found, according to Eq. (7), by n
suiserpositions. ~ ~ ~ ~ ~ ~ ~ ~ I TutekypitoZaasmthdsho he qs. (l10-0 3), the subscripts H and C a~e used to refer tosupepostios. Tustheke, oin ofZark's ethd ishow thevalues for the heating and coolinQ half cycles, respectisely.

to find the &r field,
In the case of elas,.ic shakedown, the & field is constant. Now, suppose that the yield condition. Eq. (91. permits the

that is, it is independent of time. This fact makes Z-arka's sotinf inersfthsrss&.TnfomE.11-
method rather simple. However, whenever reversed plasticity- (13), citiand 6ccan both be found in Sj-. &Hcan be found w bile

occurs, the & field saries with time and Zarka's method lose", &c-is unknown in S, and 6ccan be found while ivyis unknoA n

its simplicity. Another difficulty is that many & fields can be in S,. Since one of thie modified hardening parameters i-,alssa~s
choen ha met te equremntandthee s il b cnsierale known, the problem thus becomesthat of finding the increment

difiecncrcec in the final shakedown solution, depending on the &c - &W ( 4
choic- e of & fields. To single out the correct solution. ZarI Once the increment A& is found, the &( in S. and 4,, in S._
el al. calculated the first cycle and dleduced, through a compi. and consequentl' the entire ar field in the w~hole region. are
pro-edure. the right ir field, fullsy determined.

Whe now present a simple and straightforward method to From Eq. (8). we have an incremental relation-
directlyN derive the & field and then the shakedown solution,

It is known that under periodic loading, the stress state Ail] A (15)
al~kavs shakedown due tothe kinema-ic hardening. Asa resul:, Since from Eq. (5) the back stress or depends uniquelN on
"whetn shakedo%%n is, reached, the structure considered can he the plastic strain, whereas the regions S, and .Sý yield onis o'ne
composed of three kinds of regions: S~, S,, and Sý. Where S1 in a complete cycle, the plastic strain and consequently the
is, the reversed plasticity zone. S., yields only in the heating half back stress should he constant there. In other words, in these
cycles, and Sý yields only in the cooling half cycles (Fig. 1I t,,i() regions, the tncremental back Stress ~AZ is Zero, and the
In the stress space, it mean-, that stresses in region S, hit the incremental modified hardening parameter A& equals t he neg-
yield surface twice in a complete cycle, wshereas stresses In alive incremental residual stress AP:
regions S- and S, hit the yield surface only once and remain
%omcs%% here i,,side the yield surface during the other half cycles- An,
(if-g. 2). In other words, the above division says that during )in S, and S,. (16)
a complete es.cle when the shakedown is, reached, the yield .1 ap
condition wkill he met twice in region S4 :
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XI

cosatailforeP ar 2 is subjcte to a tepeatr chneo

'-I ./- /

/ I

Hig, 3 Two-bar assembly, Two bars are madmeifmt sam kinematic
hardening material, but 01 difterent lengths I and ,•, respectively) arid
different cross-section areas f-,A and A. respectiveyly. In addition to a '

Constant axial force P, bar 2 is subjected to a temperature change of
amplitude T, while the temperature of bar 2 always stays at zero.

Hence, we only n, ed to calculate the increment Ap to find the ,,. ,.

increment -%& and then the & field. _

It should be noted that for the reversed plasticity region. S1,
the plastic strain, and hence the back stress, vary with time so Fig. 4 Interaction diagram. two-bar assembly (k = 10. 0.9. =
that the incremental back stress Aor does exist. However, for 11). Eight different kinds of behavior are possible for a two bar as-

sembly: the purely elastic behavior E. the elastic shakiedowns E, and
this region. &Hand &(are both known and therefore the in- E, thereversedplasticityresponses P, P2. P3..andP.,andtheratchetting

crement A.& can be found directly. A.
From Eq. (7)

Ap = .1o - AOe . (17)

Elastic shakedown is characterized by the fact that the incre- Table I The possible responses of the two-bar assembly

mental stress is elastic. Hence, in such a case, the residual stress f [ -

p and, as a result, the modified hardening parameter & are Mode F il F E2 I PI P2i PJ Pde R
independent of time and thus can directly be found from the -

yield condition. On the other hand, whenever reversed plas- T k , 8
ticity occurs in any part of the structure, an evaluation of the - ,
incremental residual stress is necessary for the determination . Id i. T X
of the modified hardening parameter field. ' ' -- , i

In using this approach, the key point is that the yield con- I i C-,

dition should permit the solution of & in terms of elastic stress
a". Also, sse should know the shakedown mode, and this can Bar I I

be done by performing some pre-analysis, The solution pro-[ ___________,__

cedure can best be shown by some examples. I w" .. T !

3 Examples . K 5

Two-Bar Structure. Two-bar and three-bar structures have 1 s
been studied by -several authors (Zarka, et al., 1978; Megahed. j I

1978; Leckie and Ranaweera, 1980; etc.) to illustrate the var- .
ious shakedown analysis. To begin, we will also use a two-bar .- ,w. I

structure to exemplify the direct method.
The structure considered (Fig. 3) consists of two bars made eer Z

of the same kinematic hardening material, but of different
lengths (fand vnf. respectively) and different cross-section areas •,gk.b.,j, • ,, • S

( 1A and A, respectively). The upper end of this system is fixed, 1
and the lower end. where a constant axial force P is applied, t.d~g, X4.14 • • •
can move only in one direction. In addition to the mechanical i
load, bar 2 is subjected to a temperature change of amplitude Yw i.

T, while the temperature of bar I always stays at zero.
It can be found that eight different modes of behavior are

possible for such a two-bar assembly when shakedown is parameters. Notc that if the transient states are contdered.
reached. TheN are the purely elastic behavior-mode E, the the reversed plasticity regions P: and P, and the ratchetting
elastic shakedos n -modes E, and E 2, the resersed plasticit,-- region R can be further disided into several subregions a,
modes P1. P:. P•, and P. and the ratchetting-mode R. The shokn b, the dotted lines in Fig. 4. Since this paper concerns
characteristics of these modes are shown in the following table onl.y the final shakedown solutions, we will not examine the
and Fig. 4 gives the Interaction diagram for a particular set of transient behavior.
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\ok% 'se %%ill use the dire,: method to derke shakeJodkr n
SOhIltion,. -or confeniencc, the toilotrinc normalized ,tres,.
strain. forc. and temperature s il be used in the torth,'otnjini:

( L strain

(P
(191

(1,0

Mhere L 1, YounI',, modulus. i' is the coefficient of thermal
e\pansion. and o. i, the initial yield stress. The\ arc all con-
siderCd a, temperature-independent material properties.

The basic relationships for the t.vo-bar assembly are as tol-
lokss. .

Equilibrium equation:

"}o: ",-=p. (201

Compatibility condition:

Stress-strain relationship:
(It +(/IFig. 5 Retchetting mode A. two-bar assembly. Bar 1 and bar 2 yield in

= 17 +tension alternatively and plastic strains build-up. The kinematic hard.
(22) ening finally stops the ratChetting and the shakedown occurs.

Plastic strain-back stress relationship:

(23) 
1 *y" (29)

(C= = ka,: o"P--17

%%here k is a material constant. and for the cooling half cycles as
Yield condition:

lot-aut = I

(24) (30)(o:-cs,.l = I. ,.=__-

No\% it the stresses and strains are expressed as the sum of
two terms ,s shown in Eq. (7). the residual stresses and strains and the residual tresses can be expressed in terms of the mod-
should satisfy the following equations. ified hardening parameters as

Equilibrium equation; ( k(,rii -P )) "(l*o:O 25) Ot=(klflI)(+ ')

Compatibility condition: (311

e, = ?le2. (26) := (&-,- 1 . )
Stress-strain relationship: Therefore. once the modified hardening parameters are found.

e= (k + I lj A&& the residual stresses can be determined directl) and the shake-
(27) doon solution can be obtained b% a superposition based on

(k + I )p, - k. Eq. (7).
"(A As an example, let us first consider the ratcherting mode R.

In this case, bar I yields in tension during the heating andremains elastic during the cooling, while bar 2 beha%es elast-
S,;call. during the heating, but yields, also in tension, during
los'- -,-1 = I the cooling (Fig. 5). Since both bars sield in tension alherna-

(28) ti.elv. the plastic strain svill build up and ratchettng occurs.
I-Ho.sever. the kinematic hardening %kill finallý stop the ratch-

ecting so that the structure will incur large but still finite de-Based on the above governing equations, the purely elastic formations \&hen the steady state is reached.
solution can be found for the heating half cycles as According to our general description, Fig. I, there will be
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only tmso regions S, and S in this ratchetting mode. Since it 1

1, the case of elastic shakedown, the modified hardening pa-

rameter it field, are constant and can be determined from the

yield conditions. Eq. (28i, directly

--3,7

{32) J. 3

No%% from Eq. (31) the residual stresses. %%hich are alo

constant during the cycles, can be determined

(Ik[,7 -(0 -71)(1 - •,7)]

Ik))1)( - ?-~'f
(33)

] k-j[n - (I - 71)(l ý -- ,)1
iP k 7 I1)( I + "yrf: "

and finally a superposition gives the shakedown solutions. For

the heating, we hae 2

(34)

- (k + I2)11 + I 1-

(k÷ 1)(1l.,- y')

and (or the cooling,

I 
2T +[ k I )17 ) ( +l-y ,? )0- ki7 6 + l - i) ( I + y n) I - - -'

(35) 3
1 I k+]( ,i) Fig. 6 Reversed plasticity mode Pj. two-bar assembly. ear I incurs

k + )( + V))Preversed plasticity during the cycles, while bar 2 yields In tension during+the cooling and remains elastic during the heating.

+k-riO - k( I - 0)( + -YO] /

It is seen from the development that. in the case of elastic A&.,= - p (38)
shakedown, the steady solution can be found using a very for bar 2.
simple, straightforward approach. The derivation of this steady The incremental residual stresses should satisfN the equilib-
solution based on the conventional incremental calculation is rium equation
considerably more complex.

We next consider the reversed plasticity mode P. In this w- =0 (39)

case, bar I incurs reversed plasticity during the cycles, while and the compatibility condition

bar 2 yields in tension during the cooling and remains elastic e (40)

during the heating (Fig. 6). Referring to Fig. I, we now have Ae1 =
tso regions S, and S2, and therefore. an incremental solution where, by Eqs. (27) and (36)-(38),
is necessary in the present situation. m

Using the yield condition, we can only find the modified the + tio -

hardening parameter for bar I during the heating:s + Ae, = A-e y (401

- I(P+O) e=AP-
atg= 1 1 (36)

while during the cooling, the modified hardening parameters The solution to Eqs. (39) and (40) is

for both bars are known: situation.

"P + ( +1 I ,, -nXI + 4?

+ Then, the modified hardening parameter for bar 2 during the

Thus, we need to find the increment heating can be found:

Journal of Applied Mechanics 5



n- tk- k -70-,ll-1)
-0(-1 q)lk(l -2,)- 0 -,In]d (43) _. "

and the residual stresses can be determined from Eq. (31).
Finalk., a superposition yield,, the shakedown solution:

For the: heating halt cycles.,h

0:- = , ik I I •r)l+" (k - 1W[(A- - I - -,nlp Ile

(A - (l - I • 7)0} l( l --Y ,,7 )- 3(I+)7 ]

-,72-t0e) -t- kjkhl - 7- 
2

,n - (0- '0ll- 1011 I Fig. 7 Loading situation, tube problem. The tube is subjected to an

(44) internal pressure p. an external Dressufe q, a centriftugal force caused

by the rotation of an angular velocity ,, and a distributed temperature

o - 1 (kA- l)I(k ÷- I - -• )p field Tacross the tube wall.
(A' -l) (k+ I + "r,)(l - -tn

- ( I - -, n)•t•h'] - kA-ylk( I - n - 21n) - (I - 77)(1 011 I and t. are the only strains we must deal -.ith. I-or simpi fication.

and for the cooling half cycles, the loads, stresses, and strains are normalized a, lollo%.s:

o, l= T-- (l- k(I +77)] P =-
(k-'- ~ ( 1), I "yiD

(45)
a - I (lk + lip + k-,y(I "- "n)1. Q = ! -

(k + 1)(1 )
(46)

The shakedown solutions for all possible modes can be de- =- 7 ij(r)

rived using the direct method. We will not give these solutions 2r,
in this paper due to the space limitation.

f=_Y,

Tube Problem. The tube problem has received great at-
tention in the literature. The ratchetting behavior was first
analyzed for nuclear reactor pressure vessels by Miller (1959) 74
and later by Edmunds and Beer (1961), Burgreen (1968), and o6- or,
Bree (1967, 1968). r=-

Bree studied the response of a cylindrical tube subjected to 27,
a sustained internal pressure and a cyclic temperature drop G(,
across its wall. Using a very simple one-dimensional model,
a.,suming a linear temperature distribution across the tube wall l48)
and considering primarily an elastic-perfectly plastic material (48)
behavior, he studied various responses of the tube. Later,
Mulcahy (1976) analyzed the same problem using a linear kin-
ematic hardening model. Megahed (1978) adopted a bilinear where E is Young's modulus, G is the shear modulus, 3 is the
temperature distribution and considered the effects due to cyclic thermal expansion coefficient, o is the mass density, t, is the
hardening and creep. Leckie and Ranaweera (1980) reanalyzed normalized temperature at the inner wall, 1(r) characterizes
this problem using a more realistic parabolic temperature dis- the temperature distribution, and r, is the yield stress in shear.
tribution. and a bound on the creep deformation was found.
A of these researches, however, were based on Bree's sim- There is only one equilibrium equation, namely
pl;fied n: 'el. As this model is very simple, it is natural to do 2r S... ÷fr= 0(49)
doubt s,: ,her it can model the actual situation and yield dr r
acceptabiL results.

Our previous research (Jiang, 1985) discarded all the as- one compatibility condition, namely

sumptions and simplifications made by Bree and achieved de e, -e,
closed-form shakedown solutions for all possible responses dr r
using the conventional incremental method. While the incre-
mental method worked, the derivation turned out to be com- and two boundary conditions
plex and time consuming. Now we will use the direct method (al,.= - P
to reanalyze this problem to illustrate the simplicity and ef-
ficiency of the approach suggested.

For convenience, some of the basic relationships are cited (,. = -Q
in the following. The details can be found from the previous
research. that need to be satisfied. For the kinematic hardening material,

Consider a long cylindrical tube that is subjected to an in- the stress-strain relationships are
ternal pressure p. an external pressure q, a centrifugal force I
caused by the rotation of an angular velocity u:, and an ar-ter = - [(I - 2i'a - 21,] + 6 - e,
bitrarily distributed temperature field T across the tube wall (52)
(Fig. 71. All the loads and temperature can be either sustained I
or cyclic in the analysis. leo - 2v)a* 2(0 - 0)7l 4- er,

Due to the symmetry, o, and oaare the only stresses, and f, 2
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.herc e,, is the normalzed plastic strain: here

4... - I-- l (531 Glah) 7, Ur., trdr)

in which La__"____165;
s1i121(71 (54) Zia.h i -d-rO "- ,rdr - r . dr

indicates the yield direction, and in is the hardenin,-e constant.
The yield condition is giscn b(

- a 55 and the general residual solution can be tound a,
dr - C+ .- _'55

•here 8 = G + ( I .. ,), r r"
Giler (56) G 1661

is the back stress or the hardening parameter. G + ml-iil r
NovA divide the stresses and strains into two parts according

to the general procedure: to t phere C, and C. are constants to be determined from the
0=0 boundary and continuitv conditions.

(57) It is seen that if we can find the modified hardening param-
=e",- eter 6 field, the residual stresses can be found by some inte-grations. and the shakedown solution can be obtained through

a simple superposition.

e ,= e -.- ,T o illu stra te th e d ire c t m e th o d , w e c o n sid e r a c a se , w h ic h

(58) was classified as ratchetting mode R, in our prexious research
-+ e, (Jiang, 19851.

In the case of ratchetting mode R:, the inner tube wall yields
and the outer tube wall remains in elasticity during the odd

where (C0 , T"') and (eW.. e'0) represent the purely elastic solution, half cycles, while both walls yield during the even half cycles.
whereas (a-, ¥) and . ý) are the residual stresses and strains. As a result, there exists a reversed plasticity zone near the inner
The residual stresses should satisfy the homogeneous equilib- tube surface, and a ratchetting zone in some middle part of
rium equation the tube wall (Fig. 8(a)). During the cycles, the ratcheiting

d"5 2Y zone will gradually shrink and finally tend to zero when shake-
- -. = 0 (59) down is attained, because of the kinematic hardening. Fig.
dr r 8(b) shows the shakedown pattern of this mode, where three

and the residual strains should satisfy the compatibility con- different kinds of regions exist: the reversed plasticity zone S,
dition (a s r s c), and the elastic shakedown zones S, (c 5 r <

d4 e, d) andS 3 (d_< r s b).+ er----=0. (60) As previously mentioned, due to the occurrence of the re-dr r versed plasticity, the increment A& should be found in order

The residual stress-strain relationships can be found as to determine the & field.

- 1,-=2• - G_+mt_ G Since the stresses in region S hit the yield surface twice
e-=5- r--- a during the cycles, the modified hardening parameter & can be

m m found from the yield condition, Eq. (62), for both the heating
{1-2v- G-4-m0l-P G (61) and cooling, the increment A& being known there:
-p,= 0 - + -m o A& =%..r"'+ 2 a:-r5c (67)

and the yield condition, Eq. (55), becomes On the other hand, the stresses in regions S., and S, hit the

7 - & = r, (62) yield surface only once during the cycles so that we need to
w•here, in Eqs. (61) and (62), , is the modified hardening find the increment %& in these two regions to determine the
parameter iai field. Due to the fact that the back stress does not vary in

the elastic shakedown zones, Eq. (63) yields
(63) A&,= -a c:5r:b (68)

Based on the above basic equations, the purely elastic so-lution can be found as Therefore, the problem becomes that of finding the incre-
mental residual stress ..

a'" ~ b a) Ia b

b-'- The incremental residual stresses (A%, ..X) and the incre-
mental residual strains I,, ) should satisfy the equilibrium"f13 1 -- (2- r:) + "- S(a,b) equation, Eq. (59), and the compatibility condition, Eq. (601.

8ý(1 - P ( r - The incremental residual stress-strain relationships can be found
from Eqs. (61). (67), and (68):

(64)
(P -Q)b f-] L t-2vi G+mp, G

(I -b-) +Pr + (I -- 20 (ae.=- 2)8(-~ J2m m a _rsc 
(69)

lI-2v G~m(Il-v) +G1--Z(a,b)l, Le•-7 _2 +G+ mI- Aý +-6 (A7r,,+ 2)
I-Ae h2 m
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(aI First C•e Lq (64), and Lq,. (681 and (71L the modified hardening pa-
rameter can be obtained as I ollovAs For the heating hat :I .

Int

V2)P'- Q r 0 -21
t b-a ir 8H- G-

a C 
-b 2 h) -I a r rr

(P -Q)crh' Gert• 1

... ..... . .... a- ra CI d2  1b a,£~~n) [i-' ca" U
- S S(a.ci I - I d<_.r:.h(b) Slead• State

For the cooling half cycles:

I S1  IP- Q)la:
(lrai -'3 it a r Sc

a db b - rr

(P -Q1)a'b- f f.(I I_

-- Z(cb) - I - Gftb:L St . , S• l-'Iab- [Gmll- v))bW-•iir:" j74)

a c b c) -2, (c[ -o-,j-] - - - - - - - - I- - - - - - - -X 2 (1 - + 2 In
-7 a 80 1-') V

Fig. 8 Ratchatting mode R2, tube problem. A fatchatting zone exists r
In some middle part of the tube wall. The ratchetting zone gradually - - STI(a.c,) cr d
shrinks and finally disappears when the shakedown is attained as a d r

result of the kinematic hardening.

, P I-~ r5b(b -,lr d<-r<b.
(b2 - u )r-

2

I -2, csrsb. (70) No% the residual stresses can be found from the generalte=- ,G+(l -v)cAI solutior., Eq. (66), and a superposition with the purely elasrtc
solution finally yields the s iakedown solution: For the heating
half cycles,

Based on these equations, the incremental residual stress
,Ii can be determined. Assuming that the pressures are sus-
tained loads, while the centrifugal force and the temperature =l I. I I -(I
are cyclic, we find =-P m+l-v) a a " _

• "=[ Ga~-'bza 2 I-a-1n' -{-rý) 4G m(3 -2I,)

w'here 
I G + rnGl- 2,m (d-4)

s)(a , rd . (72)+tMI- -

+mtta-o.d)] aosr<_ d
Then, by the yield condition, Eq. (62), the elastic solution,
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r R ~ On the other hand, point d borders IIo ekoti. shakedoskn
12G - -zones, one yielding during the heating and the other %ielding

G - miý I - 0 h b - r durin, the cooling, so that the shear stress remains con'tanw
at this point. As a result. ts4o conditions are a~aflable for the

___3,_- determination of these t~o boundaries.
8(-Il - r,

St(b.d) A

Or.
(76)

"- . I6m(l- R) \- -2tj r: 8(l-l.) -:-I ,

4G a
td r G M - (83)

fZ(a,d) d) 0 (I --m2-d c

For the cooling half cycles, - .
8(( -R[

a= -P- •-In G--/ - 20.

8(-1 - : r Cr

G -m(-)I - (v P)2 on we deIe usn th tra(bditina incrm ental-P metho(d, n

G= -P - 2•Gl ) I--- -I-

+ ýý l - -v~ (C r, I-sr(c, d) ] where
8(l - P I - Vd: 

2 if , 84(78) zr(e,d) 1, -t+ Id•- I t- d (8'

I G+R G(I - 2., 2- The shakedown solution, Eqs. (75)-(79), is identical to the
S- +m(J- ) G+2 8(j _ V) • r one we derived using the traditional incremental method, and

1 agrees very well with the experiment performed by Corum
1G , et al. (Jiang, 1985). which justifies the direct method we

I- V ,J r) c~t-r.-d developed.

-QG+ I-,) (2GInj+R (I_- 4 Conclusions
(79) This paper presents a simple direct method for the straight-
,dr:b forward determination of the shakedown solutions of struc-

G + m(l - ) r tures subjected to various sustained and cyclic loadings. The
advantage of the direct method is that the well-established

where theory of elasticity can be used to solve difficult plasticity
ab: b problems which traditionally have to be attacked using com-
= .[G + m(il - P)) (P- Q) - 2Gin a, plex, step-by-step, and time-consuming incremental analysis.b2-I C, The direct method was first proposed by Zarka, et al. The

G( - 2vLf +cG-td\ Gr cd 80 most important point in their framework is the introduction
8(1 - V) S;(c~d) (80) and the use of the modified hardening parameter field. How-

ever, the determination of this field turned out to be very
and complex in their original work. This paper greatly simplifies

Zarka's method by showing that the modified hardening pa-
rIrd) rameter field can be directly found from the yield condition

sr(c,d)= I d-- , td - Id -- rdr and the incremental residual stress. Thus, only two elastic
/ (81) analyses are required in the determination of shakedown so-

Z 2 d (d2 ý d :rd r)( lutions without the need of performing a full-scale elastic-
r"d = t"1 " plastic analysis.d ) It can be seen that Zarka's formulation, for example, a

residual stress-strain relationship like Eq. (10), requires a unique
It is seen that due to the different responses in different mapping between plastic stress and back stress. Thus. Zarka's

regions, the shakedown solution consists of several local so- approach is limited to linear kinematic hardening. On the other
lutions. The problem remaining is how to find the boundaries hand, for high-temperature problems and nonisothermal prob-
c and d of the different regions. Figure 8(b) shows that the lems, the back stress evolution is actually temperature and rate
point c is the boundary where the response of the tube changes dependent, and an accurate representation of cyclic plasticity
from reversed plasticity to elastic shakedown, so that the in- requires, in general, a nonlinear kinematic hardening rule.
cremental normalized shear stress at this point equals just - 2. However, the elastic-plastic response of the structure under
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sustained and cy'clic loadings, is usually very complicated, and Huocee. L)I 196s [TI: uc It''~ itrý I n I' !.tr

consequentIN. a~nv complex constuurive laws wOuld make the j Bi"' In . ,I 9Ci s;, 4',,4-
( -u~ni \1.'tNoun., i-i I, ..njc'mc:\.problem intractable. Since the purpose of this researcht is to ,tn''z ''c rs ,, to nr's. rnc-r, 0'.-r

find directly the steady-state solutions to av~oid the timne-con- rc'ii u "c'. I'" "U"~ 1 r '4 ''
suminc and expensive transient-state calculations, the linear AS.' "'"'Ir',5,i N.. .. '

kinematic hardenine rule becomes an ideal one that can be D~bh, 'a'd 'orin'1 I .\ NtI' 'iW4 1ct~-r'r'I
deat ithan rede atth sae imesatstacor~reult. h~ r I ~A ~ stcr~: oci. ir s.IL

dealt~~ir with and~d rende atc, th same-u tim stisacor\reult.

technique deseloped in this paper ohs iously is a vers\ useful %1- 1' s'.' inrtsi /! K- ' -

one under such idealization. iu 0 is I ins.ý. No' ' '

The keY point of the present method is that the vield con- Pscs\sc ~ O

dition should permit the solsing of the modified hardening. ( J .'te-r'Pu,,~ S,;\ -'. .
parameter in terms of the purely elastic stresses. A question ltanc. %k i95ý ' " It~t f Id'. I.,. al-, ~ 1'1', !...
ma\ be raised as ito the conditions wshich would make this -ne:cJ0 isu-InCJ Aild sJ. 14,,ILI'1ti. I

requirement possible. W~e have succeeded in solsing seseral L ,kiI% a~hn.(spind ajc, 11 9t ,,T.I -I
interesting problems usingt the direct method. Such general i)eisorm,,on and Damap w, HS't Icp~t,- f rowp),. I k

conditions, however, are still under investigation. We hope we National L arlort!ror. Sub~onzra,,%' '5 ý''

.:a;,, addres.; !hrý,~'~r in the nea~r Ititure. ktegahcd.k Ni .i 1971I,"'Oncins iltastr ie,'~t~i 0" . c
5

Several examples have been given in this paper to illustrate ýa'aoi "Wim'. i .. '1 " "-- -
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Abstract

The general form of the constitutive equations that describe transient and steady-
state creep of fiber reinforced metal matrix composites is developed. The physical
meaning of the constitutive functions involved is discussed in detail. A method for
the numerical integration of the constutive equations is developed. The 'linearization
moduli' associated with the integration algorithm are computed, and the constitutive
model is implemented in a general purpose finite element program. A constitutive
model for steady-state creep of fiber reinforced that has been developed recently by De
Botton and Ponte Castafieda (1992) is also considered. A number of 'unit cell' problems
with periodic boundary conditions, consistent with the requirements of homogenization
theory, are solved using the finite element method, and the results are compared with
the predictions of the analytical model of De Botton and Ponte Castafieda.
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1 Introduction

Fiber reinforced metal matrix composites are being considered for use in gas turbine engines
because of their creep resistance at high temperatures. In view of their high strength and
stiffness to weight ratio, they are also considered in automotive industry for replacing steel
and aluminum components.

An attempt to derive three-dimensional constitutive equations for creeping transversely
isotropic metallic materials was first made by Johnson (1977), who proposed a constitutive
equaticn for modollir steady-state creep in directionally-solidified eut ectic alloys. More re-
cently, Jansson (1991, 1992) used homogenization techniques to study the effective mechaii-
ical properties and the local stress concentrations for composites with periodic microstruc-
tures and nonlinear constituents. De Botton and Ponte Castafieda (1992) have developed
estimates as well as rigorous bounds for the dissipation functions of multiple-phase fiber
composites, in which the constituent phases are non-linear isotropic materials. A review
of the existing models for the effect of fibers on the creep characteristics of unidirectional
composites has been presented by McMeeking (1992). However, there have been only few ex-
perimental studies on fiber-reinforced composite systems having practical utility at elevated
temperatures (Weber et al., 1992a, b).

In this paper, we develop the general form of the constitutive equations that describe
transient and steady-state creep of fiber-reinforced metal-matrix composites. The physical
meaning of the constitutive functions involved is discussed in detail. A method for the
numerical integration of the constutive equations is developed. The 'linearization moduli'
associated with the integration algorithm are computed, and the constitutive model is imple-
mented in a general parp'ose finite element program. A constitutive model for steady-state
creep of fiber reinforced that has been developed recently by De Botton and Ponte Castafieda
(1992) is also considered. A number of 'unit cell' problems with periodic boundary condi-
tions, consistent with the requirements of homogenization theory, are solved using the finite
element method, and the results are compared with the predictions of the ,ialytical model
of De Botton and Ponte Castafieda.

Standard notation is used throughout. Boldface symbols denote tensors the order of
which are indicated by the context. All tensor components are written with respect. to a fixed
Cartesian coordinate system, and the summation convention is used for repeated indices,
unless otherwise indicated. The prefices tr and det indicate the trace and the determinant
respectively, a superscript T the transpose of a second order tensor, a superposed dot the
material time derivative, and the subscripts s and a the symmetric and anti-symmetric
parts of a second order tensor. Let a and b be vectors, A and B second order tensors,
and C and D fourth order tensors; the following products are used in the text (ab)i, = aibj,
(A-a), Aj.aj, (a.A)i = ajAj1 , (A-B)ij = AikBkj, (AB)ijsk = A11Bk,. (C : A) = CijklAkl.
and (C: D),jk1 = Cim,,nD,,,ki.
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2 Creep constitutive equations for fiber-reinforced com-

posites

We consider a material reinforced by aligned fibers. The unit vector in Ihe direct ion of the
fibers is denoted by n and is used to define the axis of transverse isotropy.

The infinitesimal strain tensor E is written as the sum of the elastic and the creep strains,
i.e.

C E= +C'. (1)

The elastic strain is written in terms of the stress tensor or as

E = C-1 :a (2)

where C is the fourth-order elasticity tensor for a linear transversely isotropic material. The
elasticity tensor is of the form (Aravas, 1992)

C = 2aII + 2bJ + 2caa + dP + e (Ia + aI), (3)

where I is the second order identity tensor, J is the fourth-order identity tensor with cartesian
components J,•kl = ( 6 biil + il6j 1k)/ 2 , a is the orientation tensor a = n n,

Pi6kl = I (aik 6i + a•i 6bk + ik aj1 + 6bi aik), (4)

and the constants (a, b, c, d, e) are related to the standard elastic moduli (E 1 , P 1 2,p 2 3 , KA23, V1 2 ).

as defined for example in Christensen's (1979) book, by
1 1 11

a IW(K2 3 - P 23 ), b = P 23 , c = E1l + 1±223 - 2p12 + I(I - 2V12 ) 2 tA'23 , (5)2 2 22

d = 2(/p12 -- A23), e = P23 - (1 - 2v12)/'123. •

The constitutive equation for the creep strain rate is of the form

i* = f(0, t) (7)

where t is time. Time is explicitely included in the argument of f so that non-steady-state
response can be described. Using the representation theorems for isotropic functions, we
can readily show that the most general form the last equation is (Liu, 1982; Wang, 1970a.b;
Smith. 1971)

a, =a + 2a 2 ta + 3a3 2 + a4a + as (or -a + a" .') + a6(. . aa-" 2 ) -f(0,t). (8)

where the a,'s are functions of t, and the following five transversely isotropic invariants:

11 = tr(or), 12 = tr(0o2 ), 13 = tr(a 3), 14 = tr(0-a) = nra-n, Is = tr(a 2.- a) = nr-a2 n. (9)
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We assume next that tne creep strain rate C' is derived from a creep potential T -' F(o t).
i.e.

Oa'0

The creep potential must be a transversely isotropic funiction. i.e. a function of the forti

q' = ',P ( 11l, 12. -1 , 14, 15, -).(1

Using the chain rule, we cnn readily show that

-ay 90, - - a0I, a1 +2aa'+3a3 '2 +aa+a 5(aa+a-a), (12)

where
O91,

Note that equation (13) is a special case of the more general form (8) with a6 = 0.
If the creep response of the material is incompressible, then the following equation must

be satisfied
3a + 2a 2 akk + a4 + 2asa,,, = 0 (no sum over n) (14)

for all values of or, where ann = n. cr- n.
For comparison purposes, we also consider the corresponding creep constitutive equations

of an isotropic material. The most general form of the constiLutive eqaution now is

C' = cl I + 2c2  + 3c+ a 2  (15)

where the cq's are functions of the isotropic stress invariants 1,, 12 and 13. The three-
dimensional form of the standard 'power-law-creep' constitutive equations is

Cr° o3 (an-1 aIr' ni°°( '+ao/
= corresponding to W(I ,/2) = (L") (16)2 n ( ao

where a' is the stress deviator, o,2 = 1.5 aoa, = 0.5 (312 - 12) is the von Mises equivalent
stress, n is the creep exponent, and (Uo, io) are material constants. Equation (16a) is a
special case of (15) with

I -o
.. 2 c2 = -3cl, c3 = 0. (17)

The matrix material of the fiber-reinforced composite is assumed to obey a power-law
creep equation of the form (16). Therefore, we require that (13) reduce to (16) when a = 0.
i.e. a3 = 0.

Summarizing, we mention that the assumed constitutive equation for the creep strain
rate of the fiber-reinforced material is

C7 = a, I + 2a 2 a + a4 a + a5 (o .a + a, a) f(a,t). (18)
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3 Identification of material functions a,

Let the coordinate axxis x:/ be along the (direction of the fibers, s( 'hat n - e:i. where e:j is
the unit base vector along the x:,-axis. The the ConIstituItte eqUal :o_ i (iS. ean he written
as

a, = , -6 - 2 (2 0 - 4 •: 1 3 6 1 - (7,:1 ý :j , :). 119

or, equivalent lt.

r = a,-+ 2a,, all.
icr = a, + 2a2022.-Or'
(33 = aaI + a4 + 2 (a2 4- a1,) a33-•

i(Ir 2a2012.
%a'• = (202 + as)a.23

-C = (2a2 +a05 )o03. 20

The transversely isotropic invariants I, now take the form

11 = tr(o), 12 = tr(o), 13 = tr((3 ), 14 = a33, 35 3 2j + 0332 - (21)

An alternative set of invariants that is commnly used is (Green and Adkins. 1960)

J = aII+0 2 2 , J2 = 033, J3 =det(c'), J4 = (ax1 -a 22)2 +4(7 2 , j 5 - 0,2 _-, 0,2 (22)

Note that, if a,5  OW/=15 = 0, then the response of the material is identical under
longitudinal (Ca23, 0a) or transverse shear (a12). Equations (20) make it clear that a2 and as
relate to the response of the composite under shear, whereas a, and a4 refer to longitudinal
and transverse tension.

4 Finite element implementation of the constitutive
model

The constitutive model described in section 2 is implemented in a finite element program. In
a finite element environment, the solution of the creep problem is developed incrementally
and the constitutive equations are integrated at the element Gauss points. In a displacement
based finite element formulation the solution is deformation driven. At. a material point, the
solution (o,, c,) at, time t" as well as the strain c,+, at time t,+I = t, + At are supposed
to be known and one has to determine the solution a,,+,

4.1 Numerical integration of the constitutive equations

We start with the elasticity equation (2)

uf+l = C': 44 =C'(1+ f- Ac')=a'- C : , A (23)
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where ,- E:,, -c, and A\E- F -7E,•' C, tIlea th wl- and c(Pep-stram inic(T'i|cii>, aiold

a-- a,, 4 C : Ac is the (known! elastic predictor.
The creep ('oust it utive equat ion I •) is it(gritate( usill it ta ck• w rd E( ul r 1 ,cci :,%. if ,

Combining 1he last two equal ions. we find

A<C` - f(a'- C 1 1'-, t,, j) At 0. 2,5

which is a non-linear equation for Ac".
The above equation is solved for .E'C using Newton's method. The first esi iuuuat e for A•'-

used to start the Newton loop is obtained using a forward Eluhler sceuiw. ij ,
f(7,, t,) At. Tlie Jacobian associated with the afor, unentioned Newton ,iict hod is given in
Appendix A. Once AE-' is found. equation (23) defines the stress c,, 1. and this completes
the integaration procedure.

4.2 Linearization moduli

In an implicit finite element code, the overall discretized equilibrium equat ions are writ ten at
the end of the increment, resulting in set of non-linear equi tions for the nodal unknowns. If
a full Newton scheme is used to solve the global non-linear equat ions. one needs to calculate
the so-called 'linearization moduli' ,.

,7 -+ (26)

For simplicity, we drop the subscript (rn + 1), with the understanding that all quantities
are evaluated at the end of the increment, unless otherwise indicated. Starting with the
elasticity equation (23), we find

J = C - C. (27)

The derivative OAEc/ilk is evaluated from equation (24) as follows

Me -__: Or 9, AtaOf (28)

Substituting the last. equation into (27) and solving for 3, we find

J=(J + A G:i ) ] C. (2,9)

It can be readily shown that the derivative Of/Ora is given by

Of22b(caa)(raa)a.D
S114-2 (2b 2 or r-F-a2 J)+3(3b3 a2-' 4 -a. B) +-b4 aa4 b., (Cr .a--r)(-a-3 a(7)i4 a,i D,Oal

(30)
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w•,ecre

b, - 0--," (no sum over 7). ,jkl := 6, -.)l -A 17 '.k JI, and D,, 1  `- (,lik7_1 -£ (T,. Oijl. (31)

Equations (30) and (31) show that Of,/3)a1k is symmetric with respect to the pair of indices

(i,j) and (k, 1). Therefore, in view of (30) and the usual symmetries of the elasticity tensor

C. one can readily show that the Jacobian 7,jki is also symmetric with respect to (i.j) and

(k, 1). which leads to a symmetric 'stiffness matrix' in the finite element computations.

5 An analytical model for creeping fiber-reinforced
materials

De Botton and Pepte Castafieda (1992) have presented recently a constitutive model for

non-linear fiber-reinforced composite materials. They developed their model in the context

of infinitesimal non-linear elasticity, but their results vn be used to describe steady-state

creep as well. For the special case in which both the matrix and the fibers creep according

to a 'power-law' relationship of the form of equation (16), their model can be summarized

as follows.

Let the creep potentials for the matrix and the fibers be of the form

*,111( (Oe) ( +, k= 1,2, (32)
n k + 1 \ _ýo~k/)

where k = I refers to the matrix and k = 2 to the fibers. For the case where n1 > n2. the

creep potential of the composite is estimated to be

T(I,,12,14) =min [c, 1(0)(t(1)) + c2 ,(2) 1,(2)) (33)

where

+= [( C + U;,) 2 o0. + (+ C•, ?)2 2]1/ 2 ,

or(2) (a , Uý, n ) = [ I -C , ,4)2 C2 , + - I C ) 1))2 ,d ,r /
a d

* 2(er) (312 - 12) - 1(11--3V4)2,8 1 4

o') 2 - ( - 314)2, (34)d 4

cl and c 2 being the volume fractions of the matrix and the fibers respectively (c, + c 2  1).

Note that T' is independent of Is, which implies that the predicted response of the com-

posite will be the same under longitudinal and transverse shear.
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6 Comparison with results of homogenization theory

The predictions of the constitutive model d(escril)ed in the previous section are compared here
with the results of the homogenization theory (Sanchez-Palencia. 1980). The homogenizat ion
techniques were developed originallvy in the context of linear elast icity. but they can be easilY
extended to infinitesimal non-linear elasticit v (.Jansson. 1992).

The comparisons are carried out for non-linear elastic materials, for which the model of
De Botton and Ponte Castafieda (1992) has been developed.

6.1 Homogenization theory

In the following, we briefly summarize some of the results of homogenization theor.y as de-
veloped by Sanchez Palencia (1980) (see also Lene and Leguillon. 1982: Lene. 1986: Jansson.
1992).

Consider an inhomogeneous body which is made of two different non-linear elastic con-
stituents. The composite material is assumed to have periodic structure, i.e. its constituents
are arranged in such a way that the composite can be constructed by the periodic repetition
of self-similar elements. We define the 'unit cell' as the smallest such repeatable element. The
characteristic length I of the unit cell is assumed to be small compared to any characteristic
dimension L of the body, i.e.

I

6 << 1. (35)

Let x denote the position vector with respect to a fixed global cartesian coordinate system.
A local variable y is introduced for the unit cell by

X
y or x = 6y. (36)

Note the a change of 0(1) in y corresponds to a 0(6) change in x.
The constitutive equation of the material can be now written at any point y within the

unit cell as
0, = f(OE,y). (37)

Next we search for an asymptotic expansion of the displacement field u as 6 -- 0. A
two-scale expansion of the form (Sanchez Palencia, 1980)

u(xy) = utO) (x) + 6u(1)(x y) + 0(62) (38)

is attempted. The functions 0), u2) etc., are assumed to be periodic functions, consistent
with the periodicity of the microstructure, i.e.

u(k)(xy + L) = u(k)(x,y), k = 1,2_ and i = 1.2,3 (39)

where 1, is the charecteristic length-vector of the unit cell in the 7-th coordinate direction.
Fwictions of the type of equation (39) will be referred to in the following as Y-periodic.

8



The corresponding strain and stress expansions are of the form

c(x,y) E t0 (x,y) + 0(W).
a (x,y) = u((x.y) + 0(6). (40)

where

C(°)(x,y) E-r°)(x) 4 E-'(')(x,y).
&r°(x, y) - f(C0°, y), (41)

with

rrk + &U.(7) y akk)
E• k = 2 a--xj + and --E•') -2 \ ý --y + . (42.)

The equilibrium equations can be written, to leading order. as

0. (43)ay,,

Note that the coordinate x is constant at the unit cell level, where positions are described
in terms of y. The above equations can be used to define a boundary value problem over
the unit cell as follows. Let fi(y), i(y) and &(y) be the displacements, strains, and stresses
of the unit cell. Then, the above equations can be recasted in the following form

fi(y) E-(°1(x) .y + u(1)(x,y),
i (Y) ' •"(0) 1 IOyu + , 2 '\

&(y) -- f(iy),
OT1-- 0, (44)
19yj

where the macroscopic strain field Ez(O)(x) is constant at the unit cell level, and u ') is
Y-periodic.

For any function q(x, y), we define

1J¢(:x, y) dV", (45)

where Y denotes the unit cell, and note that, in view of the Y-periodicity of u(',

< i >= ET(°)(x). (46)

Next, we consider the Y-averages if the global strain and stress fields

< _> = E(°) + 0(6),
< > = <a(O)> +O(6). (47)

9



Let < c >(o and < o, >(o) be the leading terms in the above expansions. We would like Io

determine the relationship between < c >(O) and < a >"I. i.e. an equation of the form

< a" >(O)= g(< C• >(O)) -8

in which the desired function g would define the constitutive equation of tile conposine. to
leading order. We note next that

< a >(O)=< o.(0) >=< 6r > (49)

and, in view of equation (46),

< E >(o)= Ex(O) =< > (50)

The desired equation (48) can be now written as

< 6r >= g(< i >). (51)

The last equation shows that the unknown function g can be determined from the solution
of the unit cell problem defined by equations (44).

6.2 Numerical solution of the unit cell problem

We consider a composite material made of a non-linear elastic matrix reinforced by continous
aligned fibers, which are also assumed to be non-linear elastic. The constitutive equations
for the matrix and the fibers are of the form

3 1a,'•"k-l o' (k( •O ~
3 a0lk 0 Unk + ! ( Il-k k = 1,2. (52)
2 x 0Ok, aGOk lk + I OOk/

The distribution of the fibers is assumed to be periodic, with the fibers arranged in a
hexagonal array as shown in Fig. 1; the dash lines in Fig. 1 indicate the corresponding unit
cell.

The loadings considered coincide with the principal material directions; therefore. in
view of the resulting symmetries, only one quarter of the unit cell needs to be analyzed. Let
the y3-coordinate-axis be aligned with the fibers. The following four types of loading are
considered:

1. Longitudinal tension: at33 : 0, all other ¾~i = 0,

2. Transverse tension: all / 0, all other a¾ = 0,

3. Transverse shear: U12 = a2I -j 0, all other r,, = 0,

4. Longitudinal shear: 31l =ýO3 :/ 0, all other 7ij = 0,
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where all stress components are meant to represent the macroscopic loading < er" >. The

exact form of the boundary conditions used in the unit cell formulation are presented in

Appendix B.

The unit cell problem defined by equations (44) is solved using the AIBAQUS general
purpose finite element program (Hibbitt, 19841). The calculations are carried out for n1 xx 10.
n2 = 3. a0 , a02 =ao and col = (02 = (o = 10'. Tile "deformation plasticity model in
ABAQUS has an additional 'linear-elastic term on the right hand side of equation (52a): the
elastic moduli used in the finite element computations are four orders of magntitude larger
than ao, so that the role of linear elasticity becomes secondary. For the solution of problems
1. 2 and 3 listed above, four-node isoparametric generalized plane strain elements with 2 x 2
Gauss integration and an independent interpolation for the dilatation rate are used in order
to avoid artificial constraints on incompressible modes (Nagtegaal et al., 1974). Problem 4
is solved using three-dimensional eight-node finite elements with 2 x 2 x 2 Gauss integration
and an independent interpolation for the dilatation rate.

The volume fraction of the fibers is 39.5%, i.e. c2 = 0.395. cl = 0.603. Figure 2 shows
the finite element mesh used for problems 1. 2 and 3: the dark and white regions in Fig. 2
represent the fibers and the matrix respectively. The layout shown in Fig. 2 is repeated in
the third direction to produce the layer of three-dimensional elements used for the solution
of problem 4.

Figure 3 shows the calculated longitudianal stress-strain curve. In Figure 3, and in
all subsequent figures, the circles correspond to the prediction of the model of De Botton
and Castafieda, whereas the dash line is the result of the finite element calculations. The
predictions of the analytical model agree well with the finite element solution.

Figure 4 shows the calculated trasnverse stress-strain curve. At a transverse strain c1l
0.01, there is a 7% difference between the prediction of the analytical model and the finite
element solution.

Figure 5 shows the transverse shear stress-strain response. At a transverse shear strain

qEll ý 12/2 = 0.01, there is a 13% difference between the prediction of the analytical model
and the finite element solution.

The finite element solution or problem 4 (longitudinal shear) produces a shear stress-
strain curve identical to that shown in Fig. 5 for the transverse shear. This is consistent with
the structure of the analytical model which also predicts identical response to longitudinal
and transverse shear.

Figures 3-5 show that, at a given strain level, the stress predicted by the analytical model
is always higher than that of the finite element solution. This is consistent with the fact that.
the complementary elastic energy function ',T developed by De Botton and Ponte Casta-ieda
is an upper bound to the actual complementary energy of the composite. It should be also
noted that the model of De Botton and Ponte Castafieda is developed for a transversely
isotropic composite with a random distribution of fibers, whereas the unit cell calculations
refer to a composite with a certain periodic microstructure (hexagonal array).
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Appendix A

Let F(Ae') = 0 be the non-linear equation (25) to be solved for Ac', i.e.

F(ACI) = Ac' - f (a(Acc),t) At --( 0. (,3j

where ,(Ac') = a' - C : Ac'. The above equation is solved for AC' using Newtons
method. The corresponding Jacobian is

OF _f Oa Of• --- - At C : 7 - = + At .-5- C. 5t

Appendix B

The boundary conditions used in the four unit cell problems listed in section 6.2 are
described in the following. We mention again that the macroscopic strain E'(0 ) is constant
at the unit cell level. We refer to the coordinate axes (y1 , y2) shown in Fig. 2, and let h be
the thickness of the unit cell in the y3-direction.

1. Longitudinal shear.

Y2= 0  L2=0,y3=0: u 3 =0,
Y3"-O: 0 f3 a0,

0Y b V-- ~ bV3- and f &I, --2 0,

y 2  b: fi2 = Ef2°2b and & 22 dy, = 0,
0

Y3 h: U3a=E•°)h and 1 J& 33 dA =< oa >, (55)

A

where A is the area of the finite element mesh on the y, - y2 plane shown in Fig. 2.

The macroscopic strain component E"(-0 ) is applied, and the corresponding < a33 >.
E-.., and E-'02 are determined.

2. 'Imansverse tension

y, = 0: il= 0,

y2=0" 72a=0,

14



Y/3 0 30,
b

Ef-lo bv 1 an d -2 dy•j dq O. f

Y2 =2b af=J 22 dy 0.

y3 = h fl,3 E3 h and J& 33 dA o. (56)
A

(U)

The macroscopic strain component E'(0 ) is applied, and the corresponding < au >'

E22° and Eff(°1 are determined.

3. Transverse shear.

y1=O: fit=O,Y1 ,•0 7ý2=0,
Y2=0: fti3 0,

b 
_(0)

Y= b U3 fL2 = E720°) bvr3- and -1 ] 12 dy2 =< 2 >a

Y2 b" fil = L-(°) b and bVf3 6-o dI= 0
0

y 3 =h: h &33dA = 0. (57)
A

4. Longitudinal shear.

Y3=0: fi2 = 0,
y= 0: 71f3 = 0,b

b

yj = byV3" fi2 = 0, f 3 - E1'0) bV• and & 13 dy 2 =< 0-13 >,
0

y2=b: f12=0,

Y3 = h if1 = '"13 f12 =0 and &31 dA =< a') >. (58)
A
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It has been suggested that multilayered sheets, in which alternating layers have different

elastic moduli, might lend themselves to tailoring to reduce, or even eliminate, harmful stress

concentrations at holes or other stress raisers. Such tailoring could be implemented by making the
sheet thickness spatially nonuniform, varying the number of layers, but keeping the layering
pattern unchanged; or, keeping the total thickness unchanged, by varying the pattern of layer

locations and thicknesses; or by a combination of these two approaches. We will call the first
method "thickness tailoring", and the second "modulus tailoring". Tailored fabrication of such
nonuniform layered sheets seems particularly well suited to masked deposition techniques.

This note provides a preliminary analytical assessment of the theoretical feasibility of
designing a tailored, layered sheet that would alleviate the stress concentration induced by a circular

hole in a field of balanced biaxial tension (see Fig. 1). If the stress concentration is actually
eliminated, the result is a so-called "neutral" hole. It should be emphasized at the outset that

reducing the average circumferential stress at the boundary of the hole is definitely not necessarily
the desired goal. As we shall see, if modulus tailoring with constant overall thickness is exploited,
and only the relative volumes of the layer constituents are changed, the stresses within the
individual layers can be reduced while the average stress goes up! (This seemingly paradoxical
result takes a little getting used to; the reason it's right is that while the stress in the stiffer material
drops, there is more of it, so the average rises.) Conversely, a misguided reduction of the average
hole-boundary stress by means of modulus tailoring can lead to higher stress concentrations within

the layers.
We consider a two-constituent layered sheet, with Young's moduli Ea (CC=1.2) in the

alternating layers, and for simplicity, we assume the same Poisson's ratio v in each layer. The

effective sheet modulus is E=f4E 1 + f2E2, where the f s are volume fractions. At each r, denote
the average radial and circumferential stresses by cr and ae, and let a., o a (a=l,2) be the

stresses in the layers. The stress-strain relations are

C&) -Va•r) F O- Va 0Er =-r Ecx E(r)

OW - VOW cr9 - V0,=()Er



S

(a)-

(b)
Fig. 1. (a) Layered sheet. (b) Hole in sheet under balanced biaxial tension.

E(r) E(r) O(2)
Lg~tOr = -- St GeE(-•) E(-•)(2

where E(oo) is the untailored sheet modulus far from the hole. Then
(a) =Ea s (a)= Ea (3Or= E-(-)sr, E--(-) SO(3)

and so the layer stresses are proportional to s, and so. Hence, it is the value of so at r=a that we
must seek to lower by tailoring E(r), or the sheet thickness h(r), or both. Note that while the stress
concentration factor (SCF) for the average sheet stress ce is cO(a)/S, the layer concentration

factors are
o(°)(a) = SO(a) = SOWa) (4)
(0(-.) S(o) S

For a uniform layered sheet, these layer concentration factors are equal to the classical stress
concentration factor oo(a)/S = 2.

The equations of equilibrium and compatibility are
d(rhc;r) = hoe (5)

dr

and d(rE- ) (6)
dr

respectively. These may be rewritten as
[Xosj] Xse• (7)

[P(so - vs)] s, - Vs5 (8)
in terms of p =- r/ a, and the tailoring function defined by

-2-



X(r) S E(r) h(r) (9)

E(-o) h(-e)

Primes denote derivatives with respect to p.

We proceed in a semi-inverse fashion by asserting the spatial distribution

sr = S(1 - p-) (10)

and solving the compatibility equation (8) for se to get[ I- v(n-I) c .
so=S 1+ (11)

where C is a constant. The only value of C that leads to a bounded tailoring function is

C= (12)
n-l-v

and this gives the layer stress concentration factor se/S--n at p=l. The tailoring formula
,.n(2-n) '/Txv-xn-I~lx

X(r)= ex[2n-I-v.,0 dx (13)

follows from the equilibrium equation (7). In all cases the peak value of X(r), as expected, occurs

at r=a, and is given by
Fn(2 -n) 'x' - x'-'d (n lv

X(a) =ex[~n( ) xvI::-x dx] (n + v) (14)

=exp[-(1 -v24 X og dx (n=l+v)

For v=O this last result equals exp(i 2/6).

Fig. 2 shows how the peak tailoring magnitude varies with the layer stress concentration

factor n, for several values of v. We remark that if only thickness tailoring is used, the SCF for

average stress is the same as that for the layers, and so is also reduced below 2. But for pure

modulus tailoring, the SCF for the average stress is given by nX(a), and this always exceeds 2 for

n<2.

To get a neutral hole, we set n=1 in the formula for X(r), and find

Xneura(r) = ex I{!fIXVdx1 (15)

For v=O, this result becomes

neutral(r)= ex" lo -x ] (v=O) (16)

Fig. 3 shows how Xneutrah varies with r/a for v=O,1/4, and 1/2.

We should check the values of (oe) (r)I/,(c)(c) = so(r)IS away from the hole. In the case

of the neutral hole, we find

-3-



so/S = 1-1( - - -+))/v (v# o0)

=1 -P-1 logp (v= 0)

and so the peak layer stress does indeed occur at the hole.
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ABSTRACT

The in-plane shear properties of a range of 2-D ceramic matrix composites have

been measured using the Iosipescu configuration. The non-linear deformation is found

to be associated primarily with matrix cracks. Consequently, the shear modulus

decreases as strain proceeds. The flow strength in shear is found to be compatible with

the stress at which multiple matrix cracking is expected to occur, without interface slip.

Consequently, the shear strength scales with the shear modulus. The shear ductility is

found to diminish as the matrix modulus increases. This effect is attributed to the

influence of matrix modulus on the bending deformation of fibers between matrix

cracks. The experimental observations are used to suggest a mechanism map that

identifies (class III) materials which redistribute stress around notches by means of

shear bands.
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1. INTRODUCTION

The iri-Fiane shear properties of 2-D ceramic matrix composites (CMCs) become

important in the vicinity of holes, notches and attachments. In such regiors, substantial

shear stresses exist, even when the applied loading is either tensile or compressive. The

performance of the composite is then influenced by the non-linear shear response of the

material. In some cases, a relatively low shear strength is preferred, because shear

deformation can redistribute stresses and diminish the notch sensitivity of the material

(Fig. la).1- 4 In other cases, a low shear strength may encourage shear localization,

leading to inferior structural performance. This latter response is often manifest at pin

loaded holes (Fig. 1b). Consequently, the versatile structural application of CMCs

requires that the shear responses of the material be predictable and adjustable. A

contribution toward this objective is made by measuring the shear properties of a range

of CMCs, and making observations of the mechanisms that cause non-linearity.

2. MATERIALS

A range of 2-D materials having differing matrix, fiber and interface properties has

been selected for this study 5 (Table I). Two C/C materials have been chosen, because

they are known to be susceptible to shear deformation and damage in the presence of

holes and notches. 3 Two C matrix materials reinforced with Nicalon (SiC) fibers have

also been used, because one exhibits shear damage around notches, whereas the other is

subject to tensile failure without detectable damage. 2 The final material consists of a SiC

matrix reinforced with Nicalon fibers.6 A summary of the constituent and interface

properties (Table I) establishes that a wide range of these properties is encompassed by

the choice of materials. All but the latter material have an 8-harness satin weave. The

SiC/SiC material has a plain weave.

KJS 1/27,g3 3



3. TEST PROCEDURES

The shear tests are conducted using the Iosipescu test specimen 7-9 (Fig. 2a). The

height of the specimen was chosen to be 25 mm and the V-notch angle was selected to

be 110' in order to provide the most uniform shear zone.9 The specimens were cut from

plates by electro-discharge-machining (EDM). Two strain gauges* were mounted (one

on each face), oriented 450 with respect to the loading axis, in order to provide a direct

readout of the shear strain.

Tests were carried out using a shear fixture (Fig. 2b) attached to a Servo-Electrical-

Mechanical load frame. The load was applied at a crosshead displacement rate of

- 2 •rm s-1. In a preliminary study, specimens were monotonically strained beyond the

peak stress, in order to explore overall behavior. Tests were then conducted with periodic

unloading and reloading in order to monitor the influence of the accumulated damage

on the stiffness. Data were collected using a PC-based acquisition program, which also

controlled the test machine. The sampling was recorded as time, load and position

(displacement), as well as strain from each of the specimen faces. All tests were

performed in air and at room temperature.

To reveal the failure mode, one specimen of each material was deformed beyond

the peak stress, immersed in a solution of ZnI2 and su-bsequently X-rayed.1, 2 The gauge

region was then sectioned, carefully polished through several layers and inspected by

Scanning Electron Microscopy (SEM).

Micro Measurement type EA-06-031DE-120
Measurements Group Inc., Raleigh, NC 27611.
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4. MEASUREMENTS AND OBSERVATIONS

Typical shear stress/strain curves, T (y), for each of the materials and a literature

result for SiC/CAS10 are summarized in Fig. 3. Also shown for comparison (Fig. 4) are

the corresponding tensile stress/strain curves, described elsewhere. 2,3,5 It is evident

that, in all cases, substantially larger strains are possible in shear, compared with tensile

loading. Furthermore, the spectrum of differing shear behaviors encompassed by this

group of CMCs, contrasts with the tensile characteristics. Changes in the unloading

shear modulus G with strain (Fig. 5) indicate that G decreases as non-linearity develops.

The X-ray die penetrant observations made after loading beyond the peak stress

(Fig. 6) establish that the non-linear definition is confined to a band between the notches

and that the damage density within the zone is relatively uniform. Such observations

are compatible with the state of uniform shear expected between the notches in the

Iosipescu geometry. 7-9

Observations of damage conducted in the SEM (Fig. 7) establish that matrix cracks

form in all of the plies plus the matrix rich regions. These cracks are always inclined at

about 450 to the loading plane (Fig. 7). The crack density increases with strain and

saturates at strains of order 1%. The crack spacing at saturation is smaller in the plies

than in the matrix-dominated regions of the microstructure.

5. ANALYSIS

The non-linearity in the shear stress/strain curve appears to be dominated by

matrix cracking, as in the case of tensile loading.5,10- 14 However, the experimental

results suggest a different influence of matrix cracks on the shear properties than on the

tensile properties. A matrix cracking model that represents the shear stress/strain curve

is expected to have the basic features illustrated in Fig. 8. The cracks are normal to the

KJS 1 r27/93 5



tensile stress. Consequently, the non-linear deformations are constrained to occur along

the tensile axis, normal to the crack plane, unless the plies delaminate. Without

delamination, interface sliding is inhibited. This situation arises because the sliding

displacements in adjacent + 45' and - 45' plies have opposing components parallel to

the cracks. A major contribution to the strain should thus be provided by the increase in

elastic compliance caused by the matrix cracks. An implication is that, by normalizing the

stress with the shear modulus (Table IH) convergence of the stress/strain curves should

be achieved. T1- expectation is broadly consistent with the present data (Fig. 9). With

this normaliz. .n, the C matrix materials have the greatest flow strength and ductility.

Moreover, similar behavior is exhibited by both SiC and C fiber reinforcements with C

matrices. It is also apparent that composites with matrices having larger elastic moduli

(C -- CAS -- SiC) exhibit reduced flow strength and ductility.

When matrix cracking occurs without fiber failure and with no interface

debonding/sliding, the tensile matrix cracking stress, (Yrac, for a material with

homogeneous elastic properties is given by,13

I
o== B[ (1+v)f2/(lf- f)((GT,/R)()

where f is the fiber volume fraction, R is the fiber radius, Frm is the matrix fracture

energy, G is the shear modulus, V is Poisson's ratio and B = 1.8. A similar result should

ap• .y in shear, when resolved into the orientation indicated on Fig. 8. Consequently,

Eqn. (1) should represent an upper bound on the shear strength associated with multiple

i-n.rix cracking. (The ocurrence of fiber failure and interface sliding must result in

dcir"nished flow strength) The upp bound values, estimated from Eqn. (1) using the

p -2rties summarized on Tables I and II, are indicated on Fig. 9. It is evident that these

IUS 1/27193 6



are of the same order as the experimental measurements and also appear to rank the

materials correctly.

The decrease in ductility in the order, C -- CAS -* SiC, is considered to reflect the

effects of the matrix on fiber failure in shear. It is evident from Fig. 8 that the fibers

experience bending deflections between the matrix cracks. The bending radius is

expected to become smaller as the matrix modulus increases, because the elastic

deformation of the matrix needed to accommodate this bending must diminish.

Consequently, fiber failures are expected to be more prevalent when the matrix has

higher modulus. Such fiber failures would result in composite failure and limit the

shear ductility of the material.

The relatively low shear strength of the C matrix materials and their high shear

ductility are considered to be responsible for the shear mode of stress redistribution

found in notched materials3,5 (Fig. 1a). Furthermore, this mechanism is absent in the SiC

and CAS matrix materials, 5 consistent with their greater resistance to shear deformation

and reduced shear ductility. This contrast in behavior, dependent upon matrix

properties, suggests a mechanism mapS,15 (Fig. 10). The ordinate of the map is chosen to

reflect the competition between shear and tensile failure. The latter is governed by the

ultimate tensile strength (UTS), designated S, which has been evaluated in detail.5 ,16

The results of this study suggest that a major scaling function for the shear strength is

the shear modulus, G. Consequently, G/S, is used as the ordinate. The corresponding

choice for the abscissa is not crucial at the present level of analysis. Hence, it is chosen

to be the same as that previously used to distinguish other damage mechanisms in

CMCs: 5 , 15 ,1 6 notably the ratio of the 'yield' strength amc to ultimate strength, S.

Superposition of experimental data onto the map (Fig. 10) suggests that materials with

G/S Z 80 exhibit a shear mechanism of stress redistribution (class III). Conversely,

materials with G/S 35 100 redistribute stresses by mode I matrix cracks combined with

fiber pull-out4 ,5,15 (classes I and U).

KJS 1•27/93 7



6. CONCLUDING REMARKS

A preliminary attempt has been made to measure and correlate the shear

properties of 2-D ceramic matrix composites. The shear deformation appears to be

dominated by the incidence and evolution of matrix cracks. A solution for matrix

cracking in tension has been shown to rank the shear flow strength of the materials

tested. However, the approach is simplistic and neglects potentially important effects of

the interface and elastic mismatch between fiber and matrix, as well as residual stress. A

model that incorporates these factors requires development.

The wide range of shear ductility zound in this group of CMCs has important

implications for the stress redistribution capacity of the material. It has been noted that

the ductility diminishes as the matrix modulus increases. This trend has been attributed

to the effect of the matrix on the bending deformation experienced by the fibers between

the matrix cracks. A model that relates the bending deformation a1-td stresses to matrix

properues is needed to develop an understanding of this behavior.

Finally, a mechanism map has been proposed that attempts to identify CMCs that

are capable of redistributing stress by shear band formation. The concept used is

elementary. It needs improvements and extensions based on models of shear

deformation and failure caused by matrix cracks.
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TABLE I

Constituent Properties of CMCs 5

Fibers Matrix Fiber Elastic Moduli (GPa) Sliding Matrix
Coating Em Ef Gf Stress, 'r Fracture

(MPa) Energy, rnm (Jm-2)

X

Carbon 230 -5
Y None 37± 5 1-5

CarbonCabn B 90 ± 20

C 10+5

Ncon SiC 200 84(CVI) Carbon 330± 40 100 ± 20 5-10

CAS 100 ±10 15 ± 5 15-25

KJS 1/27193 9



TABLE II

Shear Properties of CMCs

MATERIAL SHEAR MODULUS TENSILE STRENGTH, G/S
G (GPa) S (MPa)

C/C 7 320 21

SiC/CB 19 240 79

SiC/Cc 13 330 38

SiC/SiC 160 175 900

SiC/CAS 50 230 220

KJS I fV193 10
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FIGURE CAPTIONS

Fig. 1. The contrasting role of shear deformation on the behavior around holes:
a) open hole, b) pin loaded hole.

Fig. 2. a) A schematic of the losipescu test specimen. The dimensions are in mm.
b) A photograph of a specimen within the test fixture.

Fig. 3. Shear stress/strain curves measured for each CMC. Also shown is a literature

result for SiC/CAS. 10

Fig. 4. Tensile stress/strain curves for the same CMCs used to obtain the shear data

(Fig. 3).

Fig. 5. Change in unloading shear modulus G as a function of shear strain

superposed above the stress/strain curves.

Fig. 6. Die penetrant X-ray image of specimens after testing a) C/C, b) SiC/C.

Fig. 7. SEM views of matrix cracks formed after the onset of non-linearity a) global

view of area between the notches in SiC/C, b) detail showing a matrix rich
zone. The contrast is from the Zn12 die penetrant.

Fig. 8. Schematic of matrix cracks in two 0/90 contiguous plies, with the loads

indicated.

Fig. 9. Shear strength normalized by the shear modulus as a function of shear strain

for each material.

Fig. 10. A proposed mechanism range identifying materials that exhibit class III

behavior, wherein shear bands redistribute the stress around notches.
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ABSTRACT

The topic addressed in this paper is transverse cracking in the matrix of the 900 layers of

a cross-ply laminate loaded in tension. Several aspects of the problem are considered, including

conditions for the onset of matrix cracking, the evolution of crack spacing, the compliance of the

cracked laminate, and the overall strain contributed by release of residual stress when matrix

cracking occurs. The heart of the analysis is the plane strain problem for a doubly periodic array

of cracks in the 900 layers. A fairly complete solution to this problem is presented based on

finite element calculations. In addition, a useful, accurate closed form representation is also

included. This solution permits the estimation of compliance change and strain due to release of

residual stress. It can also be used to predict the energy release rate of cracks tunneling through

the matrix. In turn, this energy release rate can be used to predict both the onset of matrix

cracking and the evolution of crack spacing in the 900 layers as a function of applied stress. All

these results are used to construct overall stress-strain behavior of a laminate undergoing matrix

cracking in the presence of initial residual stress.
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1. INTRODUCTION

The macroscopic tensile properties of uni-directional fiber-reinforced brittle composites

have been studied extensively since the 70's, where matrix cracking with intact fibers plays an

important role in longitudinal strength. The transverse and shear strengths of such composites

are invariably lower than the longitudinal strength. Consequently, in applications where

multiaxial stress states are encountered, cross-ply laminates are commonly used. While there has

been considerable attention to the elastic properties of cross-ply laminates, relatively less has

been done to establish their fracture performance in terms of the properties of the constituent

phases. This is the topic of the present paper where emphasis is on brittle matrix composites and

explicit results for the effect of matrix cracking on overall stress-strain behavior are developed

and presented. Studies of the topic have been carried out within a framework of damage

mechanics where the effects of cracks are not explicitly predicted as represented by [ 1, 2]. More

closely related to the present work are studies in [3, 4] where explicit results for the effect of

cracks are given for general laminates. These four papers provide additional references to the

general problem area.

Recently, a comprehensive experimental study was conducted on a laminated 00/900

ceramaic/matrix composite [5]. When the tensile stress was applied along one of the fiber

directions, cracks were first observed in the 90" layer and always spanned the entire ply, but

arrested at the interfaces between layers, as sketched in Fig. 1. With further increase of the

applied stress, additional matrix cracks developed in the 900 layers in ihe same way as previous

cracks. These cracks spread as 3D tunneling cracks from small flaws located in the matrix of the

900 layers in the direction transverse to the applied stress, as depicted in Fig. 1. At even higher

applied stress, it was observed that the pre-existing cracks began to extend into the adjacent 0o

layers stably and without any fiber failure, until these transverse cracks began overlapping in the

00 layers.
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The work in this paper deals with conditions for the onset and subsequent multiplication

of tunnel cracks in the 900 layers of cross-ply laminates. In addition, the effect of the tunnel

cracks on the overall stress-strain relation of the composite will be determined, including the

contribution from the release of residual stress. Such constitutive relations are required if

progress is to be made in the effort to understand the role of micro-cracking in altering stress

concentration at holes and notches in these materials. The paper is organized as follows. We

begin by posing the problem for the energy release rate of steady-state tunnel cracks. This

problem can be solved using information from a 2D plane strain problem, which also provides

the results needed for the desired constitutive changes. Extensive finite element calculations are

then reported, providing conditions for the onset of tunnel cracking and for subsequent multiple

crack formation. The results permit one to predict the spacing expected between the 900 layer

matrix cracks as a function of the applied stress. Given crack spacing in terms of applied stress,

one can then predict the overall stress-strain behavior. This point is illustrated by giving

examples of stress-strain behavior as a function of the basic geometry of the composite, the

toughness of the matrix, and the residual stress in the next section. An approximate analysis is

carried out in the final section leading to closed form expressions for the overall compliance

change and the tunneling energy release rate as a function of crack density. These results, which

are quite accurate, will be very useful for practical applications.

2. BASIC MECHANICS

2.1. Basic equations for laminates

The elastic properties of an undamaged uni-directuonal fiber reinforced ply are accurately

taken to be transversely isotropic about the fiber direction. With the fibers aligned with the I-

axis, the constitutive relation for the undamaged ply is
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where the subscript L stands for longitudinal properties and the subscript T stands for transverse

properties. Notice that lLT = ET but generally AL * EL
2(1 + VT) 2(1 + VL)

To limit the number of material parameters in the subsequent development, the difference

between the fiber and matrix Poisson's ratios will be neglected (i.e., v. = vf = v). This

approximation is known to involve little error. The moduli of the ply are related to the

constituent properties by

EL = cEf +(I -c)Em (2)

9L= f( + c) + M(l -c)11(3
AL= (I _ c) + grri(1 (3)

and VL = VT = V (4)

where c is fiber volume fraction. Formula (2) is the rule of mixtures for the longitudinal

stiffness, and (3) was given in [6] using the composite cylinders model. The remaining modulus,

ET, has a somewhat greater dependence on the spatial arrangement of the fibers. The

approximation used here is taken from [6]

ET I + 2TIc Em (5)1 -T~

-lT~Ef1

where T) EM (6)
E' +2
Em
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The above formulas apply under tOe condition that no debonding occurs between the fiber and

matrix in the plies. To obtair some insight into the role of fiber/matrix debonding, results will be

computed in addition for the limiting case where it is assumed that the complete debonding has

occurred. To model this, we have followed the suggestion in 15] and have taken Ef=-O in (6),

thereby reducing the transverse modulus. The effect of debonding on the longitudinal shear

modulus is ignored since this effect is relatively unimportant.

Now consider a cross-ply laminate with equal thicknesses of 00 and 90° plies subject to

in-plane loading only, aý illustrated in Fig. 2. A standard derivation based on the assumption that

the in-plane strains are identical in every ply and that there are an equal number of 00 and 900

plies, gives the overall relation for the laminate to be

I V0
£I=-c0 1 1 -- a0 -2

E E0

V22 - O 1 + 00o22 (7)

1
E12 =•- 122ga0

where
(1 + EL?2 -VL 2

E0 = 4 ET2
1 EL 1 VL2

-(1+ -(--

2 ETET EL
2VL

VO=- EL (8)
1+-

ET

110 = A'L

are Young's modulus, Poisson's ratio and shear modulus of the laminate, respectively, in the

defined coordinates.

The plane strain Young's modulus defined as
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1 EL

o = 2(9 )
-v EL _VL2

ET

will appear frequently in the sequel. Since the transverse modulus ET depends on whether the

fiber/matrix interfaces are bonded or not, E0 also differs for these two cases.

2.2 Concept of steady-state tunneling cracks

Cracking in layered materials often occurs in the tunneling mode within individual

layers, as illustrated in Fig. 1. The energy release rate at the tunnel front can be computed in

principle by a three dimensional analysis. However, as the length of the tunnel becomes long

compared with layer thickness, a steady-state is reached in which the same mode I energy release

rate Gss is attained at every point on the front and is independent of tunnel length [7]. From an

energy argument, the steady-state energy release rate Gss can be computed using quantities from

the two-dimensional plane strain solution to the crack problem depicted in Fig. 3. The result is

G. =-L , I _ (x)(10dx)

where 2t is the layer thickness, o0 is the stress normal to the crack surface prior to cracking, and

8 is the crack opening displacement. This is applicable to linear elastic anisotropic materials and

can be used when residual stress is present.

3. FINITE ELEMENT ANALYSIS

3.1. Isolated cracks and the onset of tunnel cracking

A complete analysis of the isolated crack problem depicted in Fig. 3, is performed by

finite element analysis for all practical ranges of fiber volume fraction c and the ratio of Young's

modulus of fiber to matrix, for both bonded and separated fiber/matrix interfaces. The results for

propagation of an isolated tunneling crack will be used to generate the conditions under which

extensive matrix cracking first occurs.
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Figure 3 shows the cross section of a laminate with a single Lransverse crack spanning the

entire central 900 layer. The stress-strain behavior of each of the plies is taken to be elastically

orthotropic obeying (1), with due regard for the two orientations. The interfaces between the

layers are ,ssumed to be perfectly bonded. Plane strain conditions are assumed in the z-direction

and vm = vf = 0.2. The average tensile stress applied at infinity is a, and the tensile stress in

the 900 layer, prior to cracking, is 2ET a. One can readily show that the normalized
EL + ET

steady-state, tunneling energy release rate, GssE0, defin from (10) is a function only of fiber

volume fraction c and the modulus ratio Ef/Em, assuming the Poisson's ratios have bee-,

as, .6ned, i.e.,

GssE0 = f(E ,c)CY2t Em

where E0 is definea in (9) for the two cases, bonded and unbonded fibers mentioned in

connection with (6). Results displaying the dependence are shown in Fig. 4 for the two cab-.s.

These results were computed using a 7-layer laminate model with the crack in the central layer,

but they should apply for an arbitrary large number of layers with high accuracy. In fact, results

computed using a 3-layer model and normalized in exactly the same way differ only very slightly

from those shown in Fig. 4.

Denote the toughness of the layers in the tunneling cracking mode by F, measured in

units of energy per unit area. For a crack propagating entirely in the matrix, this would be the

mode I toughness of the matrix, Frm. For a tunnel crack front encompassing the unbonded

interfaces between the fiber and matrix, F would be some fractirn of Fm. The minimum stress

Gonset required for propagation of tunneling cracks in the 900 layers is obtained from (11) as

0 onset t f(--L,c) (12)

EMr

This sets the conditiot, for the onset of extensive cracking in 900 layers. Note that this first

cracking stress is inversely proportional to the square root of the ply thickness. If an initial
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residual tensile stress, OR, exists in the 900 layers acting parallel to the applied stress. then the

sum of OR(EL+ET)/(2ET) and GonseA should appear on the left hand side of(12). In other Nords,

residual tension in the layer, modified by the factor (EL+ET)/(2ET), is equivalent to an overall

applied stress contribution as far as tunnel cracking is concerned.

3.2. Multiple Cracking

Multiple cracking in 900 layers occurs when the applied stress exceeds the critical level

given by (12). Results will be presented in this subsection for the doubly periodic, plane strain

crack problem depicted in Fig. 5a. Specifically, results will be presented which allow one to

predict: (1) the evolution of crack density in the 900 layers, (2) the increase in overall

compliance as a function of crack density, and (3) the extra overall strain released by the cracks

in the presence of residual stress. The cracks are taken to be equally spaced within all 900 layers,

with spacing 2L and with the doubly periodic pattern shown in Fig. 5a. Plane strain conditions

are again invoked and no traction is applied in the x-direction. Because of symmetry, onl] one

quarter of a periodic cell needs to be considered in setting up the finite element model, which is

shown in Fig. 5b. Standard symmetry boundary conditions are applied on all the edges of the

quarter cell in Fig. 5b exc,,)t along the crack face where traction-free conditions are imposed.

The average traction on the vertical faces is required to vanish, consistent with the assumption

that no stress is applied in the x-direction.

The finite element results for Gss, expressed in non-dimensional form as

GssE =( Ef t(13)
02t Em L

are shown in Figs. 6a and 6b, respectively, for bonded and separated fiber/matrix interfaces. In

Section 4, it will be shown how to use this result for steady-state cracking to predict crack

spacing as a function of applied stress. The corresponding results for the effective plane strain

Young's modulus for the periodically cracked composite, defined as Ek=o/F. where c is the

average strain in the y-direction, are shown in Figs. 7a and 7b as
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EC = h(Ef ct (14?
E0  Em L

As the crack density 0- becomes larger than about 2, the results have asymptoted to the limit in

which only the 00 layers carry the load, which are simply

EC ELEL (15)

E0  EL+ET

It can be shown, by the reciprocal theorem of elasticity, that (13) and (14) are related by
+ t Ef

-. I+ g( c -)(16)
h( E ,ct) 2 LEm L

Em L

Residual stresses and strains are generally introduced during the process when the plies

are bonded together to form the layered composite. As discussed earlier, if an initial, uniform

residual stress OR exists in the 900 layers acting parallel to the applied stress o, the effect on the

tunneling energy release rate is taken into account by replacing 0 on the left side of (13) by the

sum of OR(EL+ET)/(2ET) and a. An additional overall strain, EA, occurs due to the release of

residual stress by the formation of the cracks in the 900 layers. By a simple process of

superposition (see Appendix), one can show that

I __._ EL +ET (h- 1) EL + ET O(17)

EC E0  
2 ET 2 ET E0

In the limit where the crack spacing becomes small (i.e., t/L becomes larger than about 2), the

stress in the 00 layers due to the residual stress is reduced to zero. Consequently, in this limit, EA

is just the negative of the initial strain in the 00 layers in the uncracked composite, i.e.,
EoET. 2x

EL+ETOR =( 1 -. VL 2)- (18)2 EL E0 EL EL
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4. APPLICATION TO PREDICT CRACK SPACING AND

OVERALL STRESS-STRAIN BEHAVIOR

4.1. Prediction of crack spacing

Results obtained in the last section will be used here to predict the tunneling crack

spacing in 900 layers as a function of applied stress. The method employed here is identical to

that of Hutchinson and Suo 17] used to predict the crack spacing in thin films under residual

tension. It considers the effect of a sequential cracking process where a new set of cracks tunnels

between an existing set of cracks as the stress is increased, rather than a process where all the

cracks tunnel together.

The calculation of the energy release rate for the cracks tunneling in the sequential process

makes use of the basic solution (13) for simultaneous steady-state cracking. That solution is for

simultaneous tunneling of all the cracks, periodically spaced a distance 2L apart, in the 900

layers, as in Fig. 5. For any such laminate, the steady-state tunneling energy release rate for each

crack is given by (13),

GE 0  L) (19)
a t L

where here the dependence of g on Ef/Em and c is left implicit. As noted before, when a residual

stress OR exists in the 900 layers acting parallel to the overall applied stress ;, then a in the

above formula should be replaced by o+ (EL+ETWRI(2ET).

Now consider the sequential cracking situation depicted in Fig. 8, where one set of

cracks spaced a distance 4L apart has already tunneled across all 900 layers, and where a second

set bisecting the first set is in the process of tunneling across the layers. We depicted in Fig. 8

only an isolated 900 layer for better viewing. The steady-state energy release rate for the cracks

in the process of tunneling can be obtained exactly from the strain energy difference far behind

and far ahead of the tunneling fronts as
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Gss 2  - g(t ) 20

0% L 2L

Under the assumption that new cracks will always be nucleated half-way between cracks

that have already formed and tunneled, and with Gss identified with the mode I toughness r

along fiber direction of 900 layers, (20) predicts the relationship between a and the crack spacing

t/L. This relation is plotted in Fig. 9 for bonded fiber/matrix interfaces. There are two features

worth noting. For spacing larger than b't of about 2, there is essentially no interaction between

the cracks and the spacing is indeterminate by the present analysis. For smaller spacings the ratio

t/L increases approximately linearly with stress o, and the dependence on the parameters c and

Ef/Erf is largely captured in the non-dimensional stress variable a/q( EOr/t). Implicit in the

spacing relationship in Fig. 9 is the assumption that initial flaws exist in the 90° layers of

sufficient size and density such that the tunnel cracks will initiate when the steady-state condition

is met. In this sense, the relation between spacing and stress may predict somewhat smaller

spacings at a given stress than actually occurs.

4.2. Prediction of overall stress-strain relation accounting for progressive cracking

Let o be the overall stress applied to the composite and suppose that a residual stress oR

exists in the uncracked 900 layers acting parallel to the applied stress. With a replaced by

a+(EL+ET)OR/(2ET) in the non-dimensional stress variable on the ordinate in Fig. 9, the

appropriate curve in this figure can be used to predict t/L as a function of a. Next, combine (14)

and (17) to give the overall strain c as

I+ETR (21)EC ="hEo •,h- 2ET "E0

Here h(Ef/Em,c,t/L) can be obtained from Fig. 7 once one has obtained the relation between t/L

and a as just described.
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The calculations described above are now illustrated. In Fig. 10 plots are displayed of the

normalized overall applied stress against the normalized overall strain for cases in which there is

no residual stress. As noted earlier, the stress remains essentially unchanged until the crack

spacing reaches an L/t of about 2. This corresponds to the flat portion of the stress-strain curves

in Fig. 10. As L/t diminishes to small values (below about 1/2), the 00 layers carry most of the

load, leading to the linear response evident in the figure, with (15) providing the asymptotic

slope of these curves. A remarkable feature of these curves is the fact that the non-dimensional

overall stress and strain variables used in Fig. 10 nearly collapse all the curves for a wide range

of Ef/Em and c.

Fig. 11 shows the effect of a residual stress crR in the 900 layers, a positive value

representing a residual tension and a negative value representing a residual compression. The

critical stress Ocr used to normalize the residual stress in Fig. 11 is the stress at which cracks

begin to tunnel in all the layers in the absence of any residual stress. From (13), this stress is

0 = E0° (22)
rcr ="t g(Ef/E.',c,0)

'This critical stress is between 5 and 10 % higher than the onset stress for tunneling of an isolated

crack given by (12). In Fig. 11, o is the applied stress. Depending on its sign, the residual stress

increases or decreases the applied stress at which matrix cracking occurs and makes a

contribution to the overall strain due to its partial release.

5. AN APPROXIMATE THEORETICAL SOLUTION

5.1. The theoretical development

In this section we shall develop an approximate analytical solution to the doubly periodic

plane strain crack problem posed in Fig. 5b. Except for a modification suggested at the end of

this section, the approximation follows fairly closely a similar solution in 181, where it was
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developed to predict the stress transfer between 0O and 900 plies of a cracked laminate. The

solution in [8] applies to periodic cracks in a single layer sandwiched between 00 layers on both

sides. The following equilibrium equations must be satisfied in both 900 (denoted as material I)

and 00 (denoted as material II) plies.

acrx + •Xy = 0 (23)

ax ay

kxy + )°y = 0 (24)

ax ay

The stress-strain relations for plane strain conditions can be easily derived from (1). They

are, for 900 plies,

Ex=au 1 VL 2  VT +VL2  (5

Xax ET EL ET EL

E -=-_(-T +-YL)oCx+( I VL- )ay (26)
Dy ET EL ET EL

2 ( dV __ I__ (27)
S -~ + ) =~-

and for 00 plies,

=au I-VT2  VL 0+VT)

ax ET EL

av = ( T VL 0+ VT) EL(2)
1--E(29)VL

Dy EL EL

1.iau + v l t (30)

The boundary conditions for a typical cell of the doubly periodic problem are the standard ones

reflecting symmetry and the relations between the overall quantities and the averages of local

quanuties over the cell boundaries.
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To proceed, we assume that the stress component Oy in both plies is independent of x. In

other words, we look for an approximate solution of the form

Oy I =-F(y) + 01 (31)

yI =11 F(y) + oII (32)

where al and oI1 are the stresses in the 900 and 00 plies, respectively, that would result in a

damage-free laminate subject to average remote tensile stress a. They are given by

r= 2E o (33)

ET+EL
2EJ2EL

a o1 (34)
ET + EL

We shall omit a detailed derivation for briefness; most of the details are similar to those

given in [8]. After satisfying Eqs. (23-25), (27), (28), (30) exactly, Eqs. (26) and (29) in an

average sense with respect to the x-direction, and satisfying all the boundary conditions except

those listed below in (36) and (37), we obtain the following linear integral-differential equation

for F(y):
4 F... t2 21 L

t4 F.. (y)- 2a 2t2 F"(y) + al2 F(y) + a0 L JoF(y)dy = 0 (35)

where

15 J(I VL2  1-VT2 Y 1 1 1

, , . I - +I I

2A RET EL ET AJT 9L.)

ET(- ELL E L (+VT) )+(VT+ V jL2 T1
ET EL EL(+ ) ET ELAET)
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ET 2~

Al = ET EL ET "ET EL EL

aET EL E

S[Q(vT + VL2 (VL (1+ VT)J]2}

A ET EL EL EL

1 VL2 + - -- T I2 VL 2)( - VT 2

EL i ET TLL E,
The remaining boundary conditions to be satisfied are given by

F (0) = 0, F(L) = o, and F (L) = 0 (36)

In addition, it is required that F(y) be an even function in y:

F(y) = F(-y) (37)

The solution to (35) can be used to express the integral of F(y) as

JF(y)dy= tA(-)o! (38)
0 L

where (1 (which is also a function of ao, al and a2) will be given below. The Young's modulus of

the cracked composite, Ec, is then approximately

E= 0E~O (39)
V 1(L)/L 1+ t ! (39)

LEL

and the tunneling energy release rate Gss, calculated from

Gss = o';[IVI(L)- V'(L)] (40)

is given by the approximation
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Gjs0 2ETJ
GS2t = -"- 

(41)
a 2t EL

In Eqs. (39) and (40), terms such as V(L) stand for the average y-displacement along y=L.

For the case a2/aj is less than 1, 4 is given by

2( - h)mn 2mL_ 2nL
L m---+-n y- (cosh -cos t

*( ) = 2nL 2hmn mL nL(42)
m sin-+nsinh 2mL - 2 2 t (cosh--- cos 2nL)

t t m 2+n"L t t

where

m= j(aI + a2 )/2

h= a0

a0 + a1
2

For cases where a2/al is equal to or greater than 1, similar solutions can be obtained.

However, for most practical fiber-reinforced composites, a2/al is either less than I or sufficiently

close to 1 such that (42) is a good approximation.

5.2. Modification using the FEM results

The analytical approximation given by Eqs. (39), (41) and (42) can be further enhanced

by a slight modification of 0 in (42), which was suggested by the comparison of the approximate

predictions with the more accurate FEM results obtained in Section 3. We found that the

accuracy of the above approximation was improved when we replaced m and n in (42) by 1.1 m

and 1.In, respectively, and then multiplied c by the numerical factor 0.82. Thus the modified 4,

is given by
0.22(1 -h)mn 2n 2.L

=m0.82 m+n2 (cosh22mL -cos2.2nL)L T t t
L m sn2.2nL 2.2ml 2hmn t 2.2mL 2.2nL (43)

1. m sin + 1. In sinh 22 +2-(cosh * cos2 )
t t m +n L t t
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Several comparisons of the results given by FEM analysis and the explicit formulas of

Eqs. (39) and (41) are demonstrated in Figs. 12a. and 12b. The differences for all practical

ranges of Ef/Em and c are within 5%, and thus we believe the formulas given above are well

suited for practical applications.

Acknowledgment

This work was supported in part by the DARPA URI (Subagreement P.O.#KK3007 with

the University of California, Santa Barbara, ONR Prime Contract N00014-92-J-1808) and by the

Division of Applied Sciences, Harvard University. Finite element analyses are carried using

ABAQUS (Hibbitt, Karlsson & Sorensen Inc., Providence, Rhode Island, U.S.A.).

References

1. D. H. Allen, C. E. Harris and S. E. Groves, Int. J. Solids Structures. 23, 1301 (1987).

2. D. H. Allen, C. E. Harris and S. E. Groves, Int. J. Solids Structures. 23, 1319 (1987).

3. P. Gudrnundson and S. Ostlund, J. Composite Materials. 26, 1009 (1992).

4. P. Gudmundson and W. Zang, SICOMP Tech. Report 92-007 (1992).

5. D. S. Beyerle, S. M. Spearing and A. G. Evans. To be published.

6. R. M. Christensen, Mechanics of Composite Materials. Wiley, New York (1979).

7. J. W. Hutchinson and Z. Suo, in Advances in Applied Mechanics (edited by J. W. Hutchinson

and T. Y. Wu), Vol. 29, p. 64. Academic Press, New York (1991).

8. L. N. McCartney, J. Mech. Phys. Solids. 40, 27 (1992).

APPENDIX

When an initial residual stress OR exists in the 900 layers acting parallel to the applied

stress, an additional overall strain EA occurs due to the release of residual stress by the formation

of the cracks in the 900 layers. "Ibis additional strain can be calculated by applying a normal

stress of (-OR) to the crack surface. Fig. A 1(a) depicts a quarter of such a periodic cell, with

standard symmetry boundary conditions applied. By a linear superposition argument, one can



-18-

easily verify that the displacement and stress fields of Fig. Al (a) can be obtained by subtracting

that in Fig. AI(c) from Fig. A 1(b), where (b) has the same crack configuration as (a), and (c)

depicts the crack-free laminate. The elements in (b) and (c) are both subject to an average stress

(EL+ET)UR/(2ET). The overall strain Etb associated with (b) is given by (14)

- I EL +ET'J~ -1EL + ET2R (Al)
E= 2 ET 2 ET Eo

and the overall strain cc in (c) is given by a uniform plane strain tension

1 EL+ET-: =-o E aR (A2)

The overall strain EA in (a) is then

EA =Eb-Cc =(h - 1) EL+ET CR (A3)2 ET EO

which is (16) given in Section 3.
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Fig. 8. A new set of tunneling cracks bisecting an existing set of cracks in a given
layer.
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Plane strain delamination growth in composite
panels

P.-L. Larsson
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&
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Composite panels with straight-through cracks are analyzed with respect to
energy release rates using an asymptotic method. Various combinations of
geometry and material parameters are considered and predictions are made
about the initiation and stability of crack growth.

I INTRODUCTION formed under plane strain conditions, with the
panels loaded in prescribed displacement. Linear

With the increasing use of composite panels in fracture mechanics is relied upon as regards initia-
design, such problems as inter-layer cracks or tion and propagation of crack growth and such
delaminations have received much attention in events are assumed to occur at a constant value of
recent years. This type of damage may be present the critical energy release rate. However, such
already at fabrication but may also develop for features as a decomposition of the energy release
example if a structure is exposed to impact. Since rate into tearing and shearing modes, as discussed
the presence of delaminations can severely reduce by Suo and Hutchinson' and Suo7 could without
the stiffness and strength of a load-carrying any difficulties be incorporated into the analysis.
member they are a common cause of failure in The more simple criterion involving the total
laminates. Perhaps the first investigators to study energy release rate is, however, adopted in the
the problem of delaminated plates in a systematic present case due to its solid physical background.
manner were Chai et aLl and after that numerous As mentioned earlier the problem of delamina-
articles have been published dealing with delami- tions in curved panels has been treated very
nation problems in flat panels. However, as sparsely in the literature and, to the authors'
pointed out in a survey article by Stordkers- knowledge, no attention has been given to. for
delamination problems for more complex geo- example, crack growth stability. The aim of the
metries, such as composite shells or curved present contribution is therefore not only to
panels, have been treated very sparsely and in the examine such features as the effect of geometry
latter case the analyses have been restricted to and material parameters on the mechanical
determine the buckling load for compressed behaviour but also to provide some general
members containing longitudinal delaminations).4  insight as regards crack growth initiation and

The present study is concerned with a single propagation in curved panels.
delamination growth in a curved composite panel.
Damage of this type has been reported in a recent
experimental study by Lin and Lee5 and its prac- 2 BASIC EQUATIONS
tical significance should be sv.bstantial, particu-
larly in aircraft structures. The material properties The problem concerned involves a composite
for the individual layers are considered to be paniel loaded in prescribed displacement as
linear orthotropic and the calculations are per- depicted in Fig. 1. Plane strain conditions are

175
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,- In eqn i4;. h is the total panel thickness and
Q;.= /i I 1E, is the reduced
modulus of the pth laver with moduli E,, and E,
and contraction ratio v,, in obvious notation.

V0  The non-linear equilibrium equations. Aith the
\ &-•-! w / contribution from the shearing force 7 retained.

5-..is for the present problem

I d 1 dT , N. , dw
RR dq R R- dq

\~ I Y d.. 7' d-"

R R dq R' dq

R dq
assumed to prevail which leads to

4 =0 " In order to completely describe the problem
depicted in Fig. 1. presently modelled as corn-

a (1) posed of three composite panels, it now remains
x =0 to establish boundary and continuity conditions.

With symmetryi prevailing around q -0 this

u being the displacement in the x-direction. With requires that
eqns (1) in mind the only remaining strain corn- 0' 0
ponent in the Kirchoff-Love approximation for
kinematics then reads dw

Id w d dKw dq0 6I v+ (2)
e--R dq: R R-" d•- and

where v is the displacement in the T-direction and T

w is the transversal displacement. In the present
analysis the thickness of the panel is considered to at this point.
be very small compared to the radius of curvature, With a prescribed displacement r,, applied to
R. and the well known Donnell approximations. the free edge of the panel the kinematic conditions
as utilized in eqn (2). are assumed to give suf- at qc=0 are
ficient information as regards kinematics. = 1,,, COS

For a composite panel. with individual layers -8

assumed to be linear orthotropic with principal wK=vV sin q2
axes of orthotropy coinciding with the coordinate
directions x and q. the constitutive equations for and the dynamic boundary condition is

relevant quantities reads Mq = 0 (91

A (d•--•1(dw B d'w There remains then the need to establish equa-
= 1?-• + + 2R A - l 1 lions of compatibility and continuity of dynamic

variables at the crack front. q = q'-. Figure 2

B(d I 'dt) 2K shows the details of the geometry of the three
M -du dw+ + J panels 1, 2, 3 at the delamination boundary. As

RM = d + R k ,d R- d (p- regards kinematics continuity of transverse dis-

(3) placement and slope requires

where A. Band !) are given by til = K" = " 110)

[A. B, D] = Q, [1, :. z]dz (4) dw- dw_2  ( _11
f dq- dq; dq-
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dq q" dd dq
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Fig. 2. Load rc%ulzantr at the delamination front, d (dw){ýd i:

while continuity of in-plane displacements.

requires df fi,[ d~t" dw,

-'-ll. . 12 1
dRd ~dq dq2R dq

- 2R dr 113, (A,++ id q/\-dq)

Continuity of membrane forces, shearing forces
and bending moments requires -(~~ 'I (d i,\(di\ di'1

A'q =A' + N (141) \d ,'dqV R 'dc dq dq

T4 =, T':+ 1,, (15) d2i, d"ý,

M 4,=.M-+ M +; +)CN, - N,: t,) (16) + 1), - ]

respectively where
With the formulation of the boundary value

problem completed it is appropriate to introduce A, =A,R2/RD,1
dimensionless variables according to n, = BR/IRDI k2O)

1D, = D,DIRD,
,= ,with A,, B, and D, defined in eqn (4).

tRIj (17) The dimensionless variables may finally he
i'=,/tl introduced into the boundary, compatibility and

continuity conditions (6)-(16). The resulting
with i = 1. 2. 3 for the individual panels. explicit expressions, however, are suppressed for

brevity.

3 SOLLTION PROCEDURE

In order to solve the problem as given in eqns ( 181 and ( 19i an asymptotic method was applied. For this
purpose the kinematical variables r`, and vi, were expressed with the aid of series expansion as

- -= I - 2 + • - - t +
V', =,V- SI' +5 ' , + s ... + . +',

ý21)
si +s -, i -', } . ++ .

where s can be any monotonically increasing parameter. in this case chosen to be the non-dimensional-
ized loading parameter i,. As regards the displacements j; and ii' in eqn (21). and in the sequel, lower
index i = 1. 2, 3 still represents the individual panels while upper index i refers to the order of approxima-
tion.



178 P.-L. Larsson, F A. Leckie

BN introducing eqn ý21) into the non-linear governing equations IM8 and 19i the solution to the

problem is now given by solving a number of systems of linear equations reading
d_ 'i- d:,;'d i

£ ~+ B;i -- d+4d
dq- dq" ' ' dq

dl-q' + d'dq

dq---• - B, • +A 5• Ii. - B:
dq- dq dq /T

A), B +A iB-+

d dq dq

+ ~ ~ dgy 2 d J _ I" l - ] d....:s-:

(!, I,)d•; (A, + P,' d.-, d+

(A d \ dT / V\d dcJ dqT d~ )p ~d (p

The form of the general solution to eqn (22) is the same for all degrees of approximations and reads

S,'=(C,') cos T+(C,)ý sin V£+(C,')Iq) +(Ch•" +(C,1)59+ (C'), + (f,),
-,•p23)

(A,+ f,)(A, (c,,), + 6B,(C,)3) + 23).
- (A,+B,) A (C,), sin _(C",),cos ()- 3(C,), T -2(C>) 9'- +((f C1

l'f,+ B - A,

where (C>)A, k = L.... 6 are unknown constants and (f')1 and (f,) are functions of T given by the right-
hand side of eqn (22). By introducing eqn (23) into the boundary and continuity conditions (6)-(16) the
problem is reduced to solve a system of linear equations with 18 unknowns for each degree of approxima-
tion cach value of P. Formally the equation system reads

1l:, C'] = lg'] (24)

where the matrix a& is a function of geometry and material parameters and the vector g' is given bý
4,'), and (f >i and its derivatives. Note. however, that in the case of j = I the only non-zero terms in g' are
due to the boundary condition (8).

The solution for the unknown constants (C>') in eqn (24) can then be given in closed form for each
degree of approximation even though some tedious but otherwise straightforward calculations are
required. However. for brevity the final solution to eqn (24) is not given.

In order to gain confidence in the asymptotic solution described above, finite element calculations were
performed using the ABAQUS program system' with eight-node plane strain elements. Remembering
that symmetry prevails around q = 0, half of the panel were discretized into a set of 66 elements and the
calculated displacements were compared with the ones given by the asymptotic solution for different
material and geometry combinations.
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4 THE ENERGY RELEASE RATE AT With the aid of the adopted constitutc equw-

I)ELAMINATION GROWTH tion. derivation of the l'-valueC, for the mdix idual
panels expressed in the displacements, v and i I,

As mentioned earlier, the criierion adopted for quite straightfor\ward. If terms that dot not con-
initiation and continuation of delamination tribute to the total energy release rate in cqn 28'
growth is that the energy release per unit area of due to compatibility and continUtM\ Of d\nan.IC
growth will attain a critical and constant value, variables at the crack front. are neilcctcd then
When crack growth is self-similar it is then a
straightforward matter to determine the rate of _".I.- i d v 4 1 /di - dr'
change of potential energy of the system. In a - + -2 d d

general situation, however, the resistance of crack

propagation may be mode-dependent and in- B / d'
homogeneity of crack parameters might become +-- 12 - + s -,--

quite intricate. This matter will, however, not be 2RW dq 2_R dq! dq
considered in the present analysis.

In the case of a composite plate. local values of D, (diw)
the energy release rate taking due account of non- 2R• \, d
linear kinematics in a general situation have
recently been derived by Storakers and Once the solution to i and i-is known it is then
Andersson' starting from the von Karman plate a routine matter to determine the energy release
theory and first principles. Thus. these writers rate by aid of eqns 24 and :25 , even though due
found that the energy released at crack advance account has to be taken of the degree of approxi-
6a(x,,) at a crack contour r, having the local mation in the asymptotic solution. When present-
normal n,. could be expressed as ing explicit results it proves suitable though to

introduce a dimensionless measure defined by- 6U = .J Pfýl 11• l ,,no~da dF, (25)

where P.,, is a plate analogue of Eshelby's G = GR/D 1  3(

momentum tensor and I1 1 denotes its jump deter-
mined from the individual plate members inter- 5 RESULTS AND DISCUSSION
secting at the crack front.

For a composite plate. P,,g explicitly reads Most of the results presented refer to a situation

PIf = Wb,,3 - Nf,,,. + M,/-u-1.- Q, (26) with a panel composed of two individual layers.
separated by the delamination, with equal or dif-

where W denotes the plate strain energy density ferent material properties. The governing material
and Q, is the effective shear forceis then

As discussed by Stordakers- no fundamental dif-
ficulties appear when extending eqns (25) and (26) E, I - E,_(i% )`1E,,
to apply also to non-linear panel problems. In fact. k I '- , /. 31,
without going into details, when the Donnell E I - 1%'0'E/L
approximation for kinematics is relied upon and with index 2 and 3 referrine to the lower and
plane strain conditions prevail only upper laver. respectively, and Young's moduli and

1 14' contraction ratios in obvious notation. It is
- + - (27) believed that the results provided by these calcu-

R rq R lations gi'e sufficient information as reeards

enervy release rates and displacements for mostneed to be introduced as a replacement for :.. 26 practical applications. However. in order to
Wt()inin eqn 2examine in more detail the important features at
With (27) introduced as a replacement in eqn more realistic situations some results are also pre-

(26) the released energy per unit area can be sented for a composite panel with a tll/9(}/9(I,,-

determined as layup.

G=P, - -P, (28) The results derived by the asymptotic method
outlined above are. with few exceptions, second-

in obvious notation. order approximations. For the present purpose
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"-• perhaps he some\khat lo\w from a practical point
-2.5 - of vie\% but xa,, chosen in order to be able to

include considerable non-linear effects in the
C. /9 - analysis L_: reasonable \alucs of the prescribed

/ ., displacement (,, a: of the tran,.irsal displace-
- ment. Remember. though, that with incrtc",in'
7: values of fi the non-hlnearit\ of the solution k, ill

/' z j decrease rapidly, a fact that sinificanth simplifies
0., the treatment of these types, of problems.

. /In Figs 4-6 the energy release rate is plotted as
a function of the crack length, or crack at.Je. q
for different material and geometry combinations.

_4 6 6 a 0.25[

Fig. 3. [Energe release ratc. (,=(;R: 1) av, function of 0 r20 "

prc•,cribed displacement. ,.. for dif,,:rcnt value'. of dclami-
nation ,hickne\', .T , ,=12% 60'. R =- 1,00:

.... 1=[h0. -- 'A=. --- 'A,= 0.25

this order of approximation appears to give ade- :Q

qu:ne information as regards the important 5,

features of the problem, a matter that will be dis-
cussed in somewhat greater detail below. 0.05 -1,

The first results shown in Fig. 3 concerns the 1 14

dependence of the energy release rate on the pre- 1 _. 0. -_ .,_ . -

scribed displacement for different values on the o 5 , 5 J 25

delamination thickness, here represented by the
parameter r = t3i, and the material parameter Fig. 4. Energy release rate. 6 (•=R /1 ),. as function crack
A,,. Obviously the energy release rate increases, in length. q,. for different values of delamination thickness.
many cases rapidly. wito the external loading and r= t, li q 25. R= t00. v,, •= I --- A, =0I.

at least when k, takes on values close to one the . k,-I.--k= t.
midplane delamination (r = 0"5) seems to produce
the highest values on the energy release rate. This 0.05'
is not. however, the case for relatively large or PC.1
small k,. 10 or 0" 1 say. Especially for small values I
of k, the magnitude of the energy release rate 1.25
increases with increasing r. The latter observa-
lion, though. is due to the fact that in this two- 0.25

layer model the thickness of the layers is o.o I

dependent on the delamination thickness. As will A
be shown below in a more realistic situation with a 1
composite panel with fixed thickness of the layers 0.02

the midplane delamination always gives the
highest value on the energy release rate.

In Fig. 3 k, takes on values between 0.1 and 10
and this is believed to be representative of most
commercially used composite materials. How- o __ z_____

ever, results for more extreme numbers of k, will o 1P, r 8
be presented belowFg.S'

It should be noted that the results in Fig. 3. and Figa. l. Energy release rate. ( s= ;R'de,. as function of
in the sequel. are all pertinent to a radius of curva- crack length= q . for differeni ',alues of dlamination thick-ness. -, b e tT0m, 8 . = t101. -, I(0 . .ture. I?, being equal to 100. This value may .-- A. =1.•---A,. 10



Plane strain dhiaftniation grow/th in composite nanels , 1

3A
05 -4 B-

25!

05• 0.25 0•

1.4

0. 1

0 11.0 '
0 12 24 36 48 60 0 2 4 6 0

Fig. 6. Energý release rate. G = GRiL). as function of Fig. 7. Normalized enerv' release rate. (616,. as function ot
crack leneth. q . for different values of delamination thick- prscribad displacement. _;,, for different ',alues of de-

ncss. r-t=;,i1. q =60'. R =10(0. =1. ,1. lamination thickness. r iIt,, q,=12. q:=t- (. R= I0o.
/ = 1.

When dealing with flat panels almost with no
exception the energy release rate is a monotoni- 2.0 ,

cally increasing function of the crack length."'."
This is not, however, the case for curved panels. ,.8 o.S./ I

Instead. as may be obvious from Figs 4-6. the /
energy release ratc will attain a maximum value /X,
and only at early stages of crack growth is G an 1.6 ./.
increasing function of the delamin.tion length. In -/ ,

this sense delaminations in panels, at least for G. o0.8
these particular types of problems, grow in a 6,--' -

stable manner and crack arrest is a likely event. "" .. -
It is also interesting to note that the longest /.., j. .

period of unstable crack growth apparently 0 o25
occurs when r takes on values close to 0.5. This
further confirms the fact that a midplane delami- 1.0
nation from a crack growth point of view is the 0 vo4 6 8 40

most dangerous situation, both as regards initia- Fig. 8. Normalized energy release rate. 6/i6, . as function of
tion and stability of growth. Even with this type of prescribed displacement. t,. for different values of delami-
delamination present, however, crack growth is nation thickness. Y r,//i, q, = 12". T::=60*. R = 100:

essentially a stable process. =0-ik, 0.- - - ) = 10.

In Figs 7 and 8 :.!e energy release rate given by
the second-order approximation is compared with
results from a linear solution, in this case repre- This coupling appears notoriously in these ty-cs
sented by the linear energy release rate, 6 L. As of problems and does. almost without exception.
max' be obvious, the linear results give quite complicate the anahis. In Fig. 9 the ratio
accurate estimates on the energy release rate, between the energy release rate calculated with
except for small values of k, when the delami- the bending-stretching coupling neglected, .,
nated part of the panel is thin, r = 01 and 0'8 say. and the one derivcd by a complete analysis is
However. vkhen the delamination is close to the depicted as a function of the material parameter
midplane of the panel, or when 99_ takes on small k1 . It is obvious that in the present case this coupl-
values, non-linear effects dominate. ing has a very significant effect on the results even

Another feature analyzed in the present work is though. as regards initiation of crack growth, the
the effect that the bending-stretching coupling, estimates are almost without exception conserva-
represented by B,, has on the energy release rate. five. It must be remembered, however, that with
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QO04

the layup presently analyzed the bending-stretch-
ing coupling is present only in the undamaged part
of the panel. which from a practical point of view
is perhaps_ less important than a situation with oL02
non-zero B,-values in the panels above and below 6

the crack. This case will, however, be discussed 7
later. 0ool

In Figs 10-12 results are shown pertinent to a
composite panel witt a (0/90/0/90),-layup, with
the orthotropy angle defined as the angle between 0 18 36 54 72 90

the fibre direction and the q-axis. The ratio
between the Young's modulus in the fibre direc- Fig. 11. Energy release rate. = GR'!I),. as function of
tion and perpendicular to the fibres was in all crack length, j. for different values of delammnation thick-

cases chosen as 10. a value representative of a ness as defined by the Parameter L. q.4' R= 100.

large number of commercially used composite ,O
materials.

In Figs 10 and 1I the energy release rate is The behaviour of the energy release rate in this
plotted as a function of the crack length for dif- case was essentially the same as for a symmetric
ferent values on the parameter L. which in these layup, both as regards initiation and stabilit% of
calculations is defined as the number of layers crack growth.
below the delamination (ranging from I to 7). As In Fig. 12 the effect of neglecting the bending-
may be seen from the figures these results are in stretching coupling mentioned earlier is examined
obvious agreement with the conclusions drawn and the values on the energy release rate are corn-
above. That is. crack growth in these types of pared with results from a complete analysis. It
panel problems is essentially a stable process and should be noted that in this case the coupling is
growth is most likely to occur for a midplane present only in the part of the panel above and
delamination. below the crack. As may be seen from the results

Some calculations were also performed on a the effect of neglecting the coupling in the analysis
composite panel with an antisymmetric layup. is not particularly dramatic even though slightly
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Fig. 12. EnerTa release rate. = (,Ru IDo,. as function of
crack length. 4 . for different values of delamination thick-
ness a,, defin-d by the parameter L. q, = 90' R = 100. 0

10-..- irn-linear asymptotic solution. inon- 0 2 4 6 6 10

linear asvmp,'otic solution with ., 0. i = 1. 2.3.

Fig. 13. Transsersal displacement. ti 1) . as function of
prescribed displacement, i,. q = 12. q-=60', r0-.1.

non-conservative estimates on the energy release R= 10o., A= 1: - non-linear asymptotic solution.

rate is obtained. -- -) finite element solution. -.- linear solution.

No results have been given for the case of nega-
tive values on the prescribed displacement t0,.
This is due to the finding that for every material values of the outer loading. This was the case for
and geometry combination analyzed this feature all analyzed combinations of material and geo-
resulted in crack closure and such event will metrr combinations, and at least for values of r,
undoubtedly cause very low values on the energy up to 10 the relative difference in calculated dis-
release rate at the crack front, even when contact placements between the two methods never
effects are considered. exceeded 5%, a fact that certainly gains con-

The presented results are all pertinent to the fidence in the second-order asymptotic method
boundary conditions as described in Fig. I and used in this work as a tool for capturing the
formulated in eqns (8) and (9). However, a important features as regards delamination
number of calculations were performed with growth in composite panels.
other conditions at 99 = T,, and these results were
essentially in qualitative agreement, as regards
energy release rates, with the ones presented
above, although in most cases at a significantly 6 CONCLUSIONS
lower level.

As regards realistic numbers of the critical In contrast to what is known for flat panels the
energy release rate, certainly a wide scatter of energy release rate for curved panels, at least in
results exists. However, when examining com- the present setting. attains a sharp maximum at
merciallv used composite materials and their early stages of crack growth. This indicates that a
practical applications the conclusion is that the progressing delamination is very likely to arrest.
energy release rates calculated above definitely especially so when remembering that the resulting
falls in at least the lower range of the critical energy release rates in most cases were small corn-
values, pared with realistic values on the critical energy

Finally in Fig. 13 results given by the asymp- release rate.
totic method is compared with results calculated In many situations, quite satisfactory estimates
by using the finite element method. As may be of the energy release rates could be obtained
seen, the two methods give almost identical results when neglecting non-linear effects. This was. how-
for the transversal displacement even at high ever. only the case for thin delaminations. Also,
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Mixed mode delamination cracking, in brittle
matrix composites

G. lBao. 1B. Fanl and A.G. EBans
.tIiirzI~Iharou71 ( ( )t ~ tf Lji'~zi, i. l L n rJf% o! ( aIIi io Swizia Baýr~npji; ( -1 V'10 ut,- i I S-

Rcceiied 30I M\arch I'NY4. first rets isn i0 No ember t'J')t and second ics loon -'( ýscten))l'er I ii I

The erossth of d arnitnation crack' from holes and notches in laminated brittle 111ins COMpoNIt, 1% adddTCsNCd It
derntontrated That the hchax or is strongls intluenced b% tractions on the delimtination crack faces. caused either h% intact
mtatrix ligaments or b% bridging fibers. These tractions cause the phase ancle of loadine (,, assoctic atd' h delanhlnation to'
increaise apprceiabl\ as the crack extends. causing mode Ito be suppressed This effect carl lead to in~Creasd rcsitajcL, to
delamination as the crack extends. \%henever` the fracture mechanism alone the delamnination plane has a (! dependent
fracture energý. Trends in resistance curses are predicted.

1. Introduction of high in-plane shear Stresses. Many of the im-
portant modes are manifest upon the flexural and

Mixed mode cracking is an important damage tensile testing of notched beams and plates. While
mechanism in laminated brittle matrix compos- the damage can have some beneficial influences
ites. such as ceramic matrix, carbon-carbon. and on performance in special loading situations. gen-
epoxy matri systems (Sbaizero et al., 1990: Wang. erally these mcchanisms are detrimental and
1979; Trewetthey et al.. 1988; O'Brien, 1992) and should be suppressed to achieve acceptable struc-
in wood (Ashby et al.. 1985). Such damage is tural performance.
manifest as delaminations which occur from edges Preliminary studies of delamination crack
and from either notches (Fig. 1) or holes and as growth resistance have indicated that cracking is
interlaminar cracks which are formed in regions strongly resisted by fibers that cross-over the crack

STRESS

Fig. 1. A delamninition crack propagating from a notch in a laminuated ceramic matrix composite.

0ll"-hih3()/9_'iý$05.t( 1992 - Elsevier Science Publishers 13N. All rights reserved
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, 8c .--- - is strlctil linear and consequentl,, the stres\, th-
Y tCnsit\ tactorý induced bk a and h\ p can he

addcd tocether to gixc the net maocniudce
..aSome tmtportant hackgri und I', pro\ Ided b\

. solution, tor a la.,Ci on a substrate \, oih net

se cction w, idth hi subected to an end toro I' Pand

j . moment .l1 (Hp-: 3h). Reotou, an'.l\ti,:jI NIdu-
0

,-r , . ,occc• ,,- , ,, : - ._ a:tions exist tor the stcad\-st.te rtuation ,%herein
,3, *- , the crack length a is long compared hith the

. - layer thickness. hta ,"h 1 3). For the ela ,ticall ,

J2C
a ~homogeneous, case. the solutiot, has thle tort-

E1  (Suo and Huchinson. 19894)

Crack Length a mm, Al
Fig. I A seric, ot remisance curves esaluatcd tor dclamina- K = cos s i n to

tnon crack growsth in a laminated ceramic matrix compoit, ',: 2JL|-1 2hl I
ahen fibers bridge the crack surtacc,. ()P Al(I

K -= sin - . e( to - ).
t h.-| 2 /

plane leading to a resistance curve (Sbaizero et
at.. 1990; Bordia et al.. 1991) (Fig. 2). An impor-
tant issue thus appears to be the presence and
magnitude of forces normal to the crack. induced
either by intact reinforcements or by matrix liga- • • . 4

ments. Understanding of this problem also assists a /
in the prediction of effects on mixed mode crack- D i \ a
ing of a small volume fraction of reinforcements Piane I

normal to the crack plane. in accordance with
3-D reinforcing schemes. Toward this objective.
the present study encompasses calculations of
delamination cracks subject to crack surface trac- Symmetry Plane

tions. Some approximate analytical results are
presented first to provide the relevant back-
ground. Then, finite element results are gener-
ated and used to establish the major trends in the M
delamination resistance. P---

2. Some basic mechanics S~H

An assessment of the effects of normal trac-
tions on delamination cracking is obtained (Fig.
3a) by applying an axial stress (r to : . composite
causing a delamination crack to ex.. id from an

edge not,:h, depth h. The delamination crack is Fig. 3 (al A schematic of the defamination crack configuro
tion used for the ana (h)is. fbi A layer suhcit to an end load P

also subject to surface tractions. magnitude p. and moment A1 and the equisalcncc Aith the problem posed
F-or the problem posed in this manner, the body in iaf



,kherc R, and KIA arc the mnod I and miodc II III additioln thIl,, nioient. T•hict.h'iiat1in,

stress intrtlsit\ f actor•. respectiselsI and .- d1nd I •• tI ili the he:.iii abllo c thv ci,•ik. ýktf h aii
aIc cL.ometric t aeiorý, gixcni h\ likels io hase ain importainlt inlliticiie' ON tih. ',Lie','

inlensitic,, cwept \klicn a It i', Lires I 1n 1 t-i '

- - - i = l u " ri. (4- into I.q. t itus 'I\c',,,' prp (\inavti d Tlul.-
.-1 ] tot the' scie dx ,- ac i t h ." ,l s'' nllt.'nstllles

silt " /t
ssith. * = xr t (- I 1rf) 7= . (2) /77 n - "

Note the important effect of the relative notch dt Ii it i t

depth. It 1. on the Contribution caused bh the Kii Cos( w (I 2

end load. P. p/It 2-2- I
"The effect of the stress (r in the present prob-

lem is directly analogous to that of an end force. Combining the contributions ito K from rt and
with p. the tip "stcad-statce stress intensities are

P=,(rh. K3) /x'i Cos w 1 p a ( sinlw )

because the stress in the bod\ belowk the notch =yi2 ( I h 2

does not contribute to the stress intensities on (1 %

the delamination crack. Consequently, the effects K 1, sin w I p a 2cosl )--

of (r arc given in steadv-state by c-vh -2A I-a" _, I h -
K, COS to Kil s in wJKh cos w r _'____ (4) An important preliminary feature of the solution

-A crVi 112 A is the recognition that the mode I tip stress

An appreciable influence of the relative notch intensity diminishes as the crack extends sshereas
depth. h/H. is apparent. The energy release rate the mode II component iilcrea.ie.%. because of the
Y and the phase angle of loading di can be dominant effect of the moment contribution
derived from Eq. (4) using caused by p. Furthermore K' becomes zero at a

critical crack length a, given by

1- 2 1+ (5a) Cos.--

and h =2 A sin(w+y(

&i = tan- 1( K/K,). (5b) A small stress p relative to cr is thus sufficient to

The magnitudes are close the delamination crack at lengths of order a
few times the notch depth. h.

E The interpretation of experimental results is

'h( I - £,) 2A (6a) facilitated by obtaining the tip energy release rate
' and the phase angle of loading Wi asia fune-

and tion of dclamination crack length. Hence. Trom

d =- w = 52. V - 37'. (6b) Eq. (9)

The stress p on the crack face imposes a E I p : a
moment Al per unit length on the layer. When p -- -
is uniform and acts over the entire length of the r7,h(1 - a ) 2.-1 8I it
crack (Fig. 3a). Al is given by sin '
m - -'O. (7) - ,- T !i i)



and

\' herc

I p lp

7 ~~ sin v I c

.\'olt' that iI 'ntra . ,T ia Il r tihai ". In Lq
lout. \\hen r7 it t /I - Ic 1. the value of' . -< t
i/=U tl 4Sfg 3 Finulc ck.'mcflt rlcl u'.ed {!',i f .l. i.l,-

.' . = l-'C(,)' w 1.6. (12)
Stress intensities K, and A arc calculated

Conscquentlk. the someskhat unexpected result from nodal displacement Au. and At. in the
emerges that the tractions do not shield the crack crack tip region. using (Rice. 19Nh.O
tip. Other w'aturc.s arie needed to eXPlain tflc etperi -
menial obhertation that ., , increa.ws as the crack Au , Ki
ci-tends (Sbaizero et aL.. 19t90: Bordia et al.. 1991 Y2

The above behavior is modified when the stress
p acts over a definite length I rather than the
entire crack length. For that case. a in Eq. ( I I) is K I- I
replaced b\ I. whereupon Y' and V/ are indc- Alu, 2 - K.,
pendent of the delamination crack length when a

is large compared with h and '. Then. provided shere K = 3 - 4i, and 4 is the shear modulus.
that the crack does not arrest before a exceeds 1. The values of K thus computed are then used to
the delamination will continue to propagate sub- obtain •- which, in turn. is compared with the
ject to steady-state values of Y" and &'. value of the i-integral given in the finite element

calculation, to assess consistcncN.

3. Numerical solutions 3.2. Results.

3.1. Th7 finite elehimitt mt'thod Solutions for K and Y. have been evaluated
separatel\ for the applied :tress. a,. and the crack

Stress intensit\ factors and energy release rates surface traction. p. The effect of ar obtained for
arc determined with the finite element code. It./H = 0.1 arc plotted in Fig. 5. using the nondi-
,\A..AQtS. Svmmet r about the midsection of the mensional parameters K. r, Ii and 1t.- /(r'//(] -
beam. depicted in Fig. 3a. allows the requisite 1,:). Also indicated on the figure are analstical
solutions to be obtained by considering one half results for steady-state crack extension. T\,o as-
of the beam. The finite element mesh used in the pelts of the results are noteworth.%. The steads-
calculation is shosan in Fig. 4. To ensure the state values of K/ri/i and L, .- /h( I - r-) are
accurac of the "stcadv-state" result, the beamn in close agreement \%wlh the analytical solutions
length tihI is chosen to be 15 (Ii,. 4). Since the (Eq. (4)). Furthermore, stead%-state condition,
problem is linear, calculations are carried out for mode I deselop even when a 1h v 1. but onl.
separatcl. for the axial loading a- and for the occur for mode 11 %Ahen a il = 2. In addition.
surface tractions p. there is an appreciable decrease in the encrg.
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,ddition. KA i". kir r I- I h tA1 1 ean) thcoix p)1h-
d ICtiM .on (lj. ,,)). I II" d ttcrcncc i, tItrltLN d Ito

"" ttct,, ol dwai k.ictorhtriton. 'I hli nlt i111nfluncC o0
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S..4. Resistance curies

The delanination tracture rc,,sitance can he
;_certaijncd front the precedinmg resulil b\ adopt-

•". a .. - ing a c'ratk v. ILflae i crit'elotl. This criterion rc-
i:ý 5 N\o dimcn,dime n sire,, i tcnsitic, t ld tJner rccaNc quires that the tip cncriy eclea.sc rate , att'lin,

rac a, i tunction oi ret:im.c dclaminatuon craLk tenitih tor an the fracture cnerg\ 1'(6i of the material al.•ig
applied ýtlcss, fr. the delamination plarne. Theh tracture encrg. t.pi-

callv has the torm (Jensen ct al.. 1991)

release rate between (0 < a/h < 2. indicative of a C( d,)=lJ[1-(I -A) sinn 6!1 . (14)

region of stable crack extension, where F,, is the fracture energy at d, =I0 and A.
The stress intensities caused b\ p acting along is a material dependent coefficient, typieal.\ in

the entire crack surface are presented using the the range (.1 to (1.3.
normalization suggested by Eq. (8): K(h/a)-! Letting t in Eq. (0a) become the measured
pvh . The results, plotted in Fig. 6, reveal that the energ g release rat the following result is
nondimensional Kit attains "steady-state" at obtained
a/lh = I and furthermore, the steady-state value
is comparable to the beam theory prediction from P
Eq. (8). However. the nondimensional K, does -= (15)
not attain "'steady-statc." even for a/h = 5. In R

S
"1 • -Bear"

-,• o heo'V

Z Theo.,

Reraiae CraC, Le'e'- a ~ (a) R*e~al-V C'aC,- L 'rO!'- a (b?
Fig ti Nondirriensiinal sircs intensNi as funchtin of r.lativc dclaminaton crack tength for crack ,urtacc tractio ,. p (a i and
(h) A,,



,her 2 i', a nIdii.ensional parameter repre-
"sentlnlli the eftcc of ),.
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Furthermore. Cqualin, to 1'. and usint, Lq.
(15). the normalized cnerg. release rate I'k
for "stcad\-statC'" is determined b1. the lollo g inL-
sci of parametric equations

- 11 (1 -A.) sin-' O'a

i - , ) • _ i , ,•No - 0.- e- S. , C-3 .. . .e " T :- . . (a )
= ---- (l -2 sin -V (1,): (17a)

and -

0' =w -- d, (17b)

and

tan 6= Cos

SI-syj. (17c)

where IL is a characteristic delamination crack Non DimensonalCkLengh 'a, (b)

length _ __"_ _ _ _

~~~~~~ HZ j 18 O 5

It is readilN apparent from Eqs. (17) and (18) that
R,•/', depends on 2 only through I, The trends

in , as a function of 1, are plotted in Fig. 7
for different values of A,. Rewsiance curtt be'hai - -

iW 6 predwted. Each resistance curve in Fig. 7 7
terminates- at a critical value of I, at which the
phase angle e' becomes ./2. In addition, it is
apparent that the value of A. has a strong effect
on the predicted resistance behavior. huIeed. C c . .
I1 lt(' lt .5 = I. it h e r e p.s' tah t ( ' ' " d e c r ea .we% . h e c au sc . No , , e. o-o, ) C.. c, Lýýc - " 1 '1 " (c )
a. ai/readt nioted. the tractawr p t(hic, atr appr'- Fig. -An,dytic prediciown ot rc-,iancc cur'c, h0r dcmMInd-
ctahlh Kill. havimg the sa/ e' s'ign, if . I/Ut c( trilb)ttitont lion CrA,'kntf m t ar u, A. ' I it I / i = I0 ); (hi I f = tIlI

rfll (I. ~land (0it /I I
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The preceding result- neglect cfIcct, ot the
shear deformation. ý,hinch provide a contribution
to K,'. The resistance curie behaxior in the tran -

sient reLion at small a h is also neelected. I1o
assess these effects. the finite element result, arc /.
used to e.tablish the trend> in delamination rcst'- 7/

tancc. For this purpose. it is noted that. for each
crack length ai /h. the follo\Ning nondimcnsional
quantities apph.

KI TK, 1/

K,, Kp,, (19)
F4  = -v . l h .... .,... -.

FiP j 4. cnmparirIP , on t OIL d ii l4 t4CA l \ ,: d n Umcrim.,hl rc•il.

where K,, and K, are stress intensities caused b\ idnCC CLrI' lot h trhe caw .1 = 10 ". I I : (11 md k I)

(T and p. respectively. Then the normalized de-
lamination energy release rate aR/ n be
determined from the following set of parametric where
equations

[ I( - A,) sin2 ," -']: (2( 1

E F ) + ( E "F Trends in X as a function of a / are plot-
=[E - )+E F)j /(E+ 2 ) ted in Fig. 8 for 2: = 0.001. h/H= 0.1 and for

(20a) different values of A,. The resistance cunres ob-
tained from the finite element calculation are

and similar to those apparent from the steady-state
tan -=( E, +F )/( E-'F 1 ). (20b) analysis (Fig. 9) except that the I-,r/, are slightl\

"higher.

S.. . . 5. Concluding remarks

The predicted resistance curves gR (Figs. 7
. . and 8) have the same features as the curves

measured for ceramic matrix composites (Fig. 2).
t An influence of bridging fibers and/or ligaments
V thus appears to provide a plausible rationale for
1 resistance curve behavior in dclamination crack-
-4, ing. with thc tractions p apparcntly governed hN

"the sliding resistance along the fiber/matrix in-
2 terface (Bordia et al.. 1991 ). However. one impor-

1 j - tant finding of the calculations is that the slope of
the resistance curve is a strong function of the
matrix fracture mechanism. Notably. a materialRela!Oe Crack Len"!Q a'

Fi , Numerical prcdctimon ot resislance curc, tor" . 10 with shear insensitive matrix fracture cnerg,
and h i = 1.1. would be susceptible to unstable dclamination
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I. Introduction

The aim of this chapter is to pull together recent work on the fracture of
layered materials. Many modern materials and material -ysteins are layered.
Interfaces are intrinsic to these materials, as are neterogeneities such as
residual stresses and discontinuities in thermal and elastic properties. The
structural performance of such materials and systems generally depends ( ý
just these features. The potential applications of fracture mechanics of
layered materials ranges over a broad spectrum of problem areas. Included
are: protective coatings, multilayer capacitors, thin film/substrate systems
for electronic packages, layered structural comr:'sites of many varieties,
reaction product layers, and adhesive joints.

Attention is confined in this chapter to elastic fracture phenomena in
which the extent of the inelastic processes is small compared with the relevant
geometric length scales, such as layer thickness. For the most part, the
separate sections are designed so that they can be read independently. The
main exceptions are Section II, which presents the theory of mixed mode
interfacial fracture underlying many of the applicationb, and Section III,
which catalogues a number of basic elasticity solutions for layered systems
referred to throughout this chapter. Then follow sections on test specimens
for determining interfacial toughness, fracture modes in thin films under
either tension or compression, blister tests, and, lastly, failure modes of
adhesive joints. We believe that most of the important fracture concepts for
layered systems emerge in the analysis of these examples. One concept, in
particular, that plays a central role is the idea t..f steady-state cracking. In
almost every application considered here, a steady-state analysis provides a
simplified solution that is directly relevant to design against fracture.
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This chapter builds on earlier work by many researchers, but specificall%
the contributions to the elasticity theory of cracks in layered materials of
Erdogan and coworkers ir the 1970s, which compri-, ' most of the available
solution- until recentl]. Special mention musT also be made of the article on
thin films and coatings by Gille (1985), which gives a comprehensive treat-
ment of fracture modes without the insights from the recent developments
in interfacial fracture. It is especially these recent developments that have
transformed the subject. We have been fortunate to have been involved
with one of the groups (that centered at the University of California, Sanw.
Barbara) that have been concerned with the extension of both experimental
and theoretical aspects of fracture mechanics to interfaces. This involve-
ment is reflected in our approach as well as the topics that have been chosen
for presentation.

Structural reliability of multilayers is a fast growing field. An article
written at this point is most likely transitory work, although we have tried
t:' put various aspects into perspective, and we believe some of them are of
permanent nature. Like most review articles of this kind, subject matter
with various degrees of novelty that has not been published previously is
incorporated. Some fill gaps, others are ready extensions, and still others
are simply speculations. The writers sincerely urge the practitioners in the
related disciplines to use the article critically, so that the results can be
validated, expanded, or modified. A more consolidated version of the
article could then emerge on a later occasion.

II. Mixed Mode Fracture: Crack Tip Fields and Propagation Criteria

There is ample experimental evidence that cracks in br:ttle, isotropic,
homogeneous materials propagate such that pure mode I ccnditions are
maintain d at the crack tip. This appears to be true for fatigue crack growth
and stress corrosion cracking as well as crack advance under monotonic
loading. An unloaded crack subseqtlently subject to a combination of
modes I and II will initiate growth by kinking in a direction such that the
advancing tip is in mode I. A crack in a material with strongly orthotropic
fracture properties, or a crack in an interface with a fracture toughness that
is distinct from the materials joined across it, can experience either kinking
or straight-ahead propagation under mixed mode loading depending on a
number of factors, inciuding the relative tomihnesses associated with the
competing directions of advance. This section gives results from studies of
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crack tip fields for specifying criieria for .sraihi-ahead propa.pauon or
kinkini, under mixed mode loading. An as,,sesment of the competition
between different directions of advance can also be made. Hornoceneous
materials are considered first, starting with the isotropic case and 10oin2 on
to orthotropic symmetry. Cracks on interfaces, between dissimilar isotropic
elastic solids are dealt with last.

A. ISOTROPiC ELASTIC SOLIDS

The stress fields at the tip of a crack in plane stress or plane strain for a
homogeneous, isotropic elastic solid have the well-known general formn

cj = K(2,r)-l'a(O) + K,,(2r-r)-t ',() + T5,1 , (2.1)

where (,5 is the Kronecker delta and r and 0 are polar coordinates centered
at the tip as shown in Fig. 1. The 0-variations are given in many texts on
fracture. They are the same for plane stress and plane strain, except al 3 ,
which vanishes in plane stress and is given by vta 0 + a2-,) in plane strain,
where v is Poisson's ratio. Mode I fields are symmetric with respect to the
crac'. line with al, = 1 and cra, = 0 on 0 = 0, while the mode 1I fields are
antisymmetric with oa = I and a2 = 0 on 0 = 0. The higher order contri-
butions not included in (2.1) all vanish as r - 0. The T-stress, a 0 =I

arises in discussions of crack stability and kinking. Thus, the singular
tractions on the line ahead of the crack tip (0 = 0) have the mode I and II
stress intensity factors as amplitudes according to

c2 2 = K 1(27r)- /2, a12 = K,1 (2nr)-y/ 2  (2.2)

The relative displacements of the crack faces behind the tip,

5 i = u,(r, 0 = 7r) - ui(r, 0 =-),

X
21

I r

tkG
Fi(-,. 1. Conventions at a crack tip and the geornetry ot a kinked crack.
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in the region dominated by the singular fields are given by

(6,, 6,) = (KI, Kj)(8iF)[r/(27r)]' , (2.3)

where
E = E/(l - v2) (plane strain)

= E (plane stress) (2.4)

and E is Young's modulus. Irwin's relation between the energy release rate

G for straight-ahead quasi-static crack advance and the stress intensity

factors is
G =(K; ± A~f)/E. (2.5)

Next, consider a putative crack segment of length a kinking out the plane

of the crack at an angle 0 with the sense shown in Fig. 1. When a is suffi-

ciently small compared with all in-plane geometric lengths, including the
crack length itself, there exists a relation between the stress intensity factors
K, and K1 at the tip of the putative crack and thL iress intensity factors K,

and K11 and the T-stress acting on the parent crack tip when a = 0. The rela-
tion has the form

K 1 = c l1 K , + c12K11  + b ,Ta ]12,
(2.6)

= c 2 1K1 + c 22 KI! + b2 Ta/ 2.

The 0-dependences of the c's are given by Hayashi and Nemat-Nasser

(1981) and by He and Hutchinson (1989b), while the n-dependence of the
b's is given by He et at. (1991).

The ratio of the energy release rate of the parent crack when it advances

straight-ahead to that of the kinked crack, Gt = (K 2 + K 2)/r, is of the
form

G/G' = F(Q, .,q,,), (2.7)

where F depends on the coeffi:ients in (2.6). In addition, V is the measure

of mode II to mode I loading acting on the parent crack defined by

tan-'(K 1 I/KI) (2.8)

and
j7 T[a/(EG)]"'2. (2.9)

The ratio (2.7) applies to both plane strain and planes stress,
With G ax denoting the value of G' maximized with respect to Q for a

given V/, the ratio G/Gma, is plotted as a function of V for various values of

?7 in Fig. 2, which was taken from He et al. (1991). The kinking angle ( at
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FIG. 2. Ratio of energy release rate for straight-ahead advance to maximum energy release
rate for a kinked crack as a function of ## = tan-'(KA:/&'). Reproduced from He et al. (1991).

which G' is maximized is plotted as a function of y/ in Fig. 3 for the limit

/7 = 0. The ratio in Fig. 2 corresponds to F(v,, )7) =_ F(Ib, v/, r/). The kinking
angle that maximizes G' is nearly coincident with the kinking angle for
which K' = 0, as can be seen in Fig. 3. Only for y, greater than about 500
is the difference more than one degree, and the difference between the
energy release rates for the two directions is numerically insignificant. Thus,

800- K, 0 =0

260

40° ",. maximizes

0 0

0 20' 40' 6G` 80ý

FIG. 3. Kink angle as predicted by two criteria.
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for all practical purposes, there is no distinction between a criterion lor
kinking based on maximizine G: or one based on propagation in the direc-

tion in which K,, = 0. With F = A'. 12 denotin, the mode I touglhness,
kinking %%ill initiate at a crack tip in a briitle maicrial sub Fec to monotonic

mixed mode loading when

G = F(4/. ? =- 0)I, (2.10)

where F is the ratio in Fig. 2. Once initiated, the advancing tip ',ill be
influenced bv the T-stress through the ti-dependence of F.

B. HoMOGENEOUS, ORTHOTROPIC ELASTIC SOLIDS

Consideration will be restricted to plane cracks aligned with the principal

axes of orthotropy and crack advance that is either straight-ahead or kinked
at 90' parallel to the second in-plane orthotropy axis. With reference to
Fig. 1, let the orthotropy axes coincide with the x,-axes and take the plz ne
of the crack to be x2 = 0 with its edge along the x3-axis. Introduce elastic
compliances of the solid in a standard way according to

6

Ej = sjj, i= I to 6, (2.11)
j~l

where

-EiI = [Ell, E22, E33, 2E- 3 , 2e, 3, 2 ,P211

1(, I = ICoI, 022, 033, 023, C13, 0T121.

For the orthotropy assumed here, deformations in the (1,2) plane satisfy

(Lekhnitskii, 1981)

E, V bjogj, i= 1,2,6, (2.12)
i= 1.2,6

where, for i,j = 1,2, 6,

S(plane stress)
Ssj - S1 sJ31/s 3 , (plane strain)

with only four independent elastic constants: b I, h, 2 = b 2 , b.,, and b66

(bi6 = b 26 = 0).
For simply connected domains with traction boundary conditions, Suo

(1990c) has shown that the stresses depend on only the following two
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(rather than three) nondimensional elastic parameters:

= bll/b,-, p = (bI2 + ½b6 ,/(blb 2 )". (2.14)

This particular choice of parameters is particularly useful for reasons that
will emerge shortly. When 2. = p = 1, the in-plane behavior is isotropic
(i.e., the material is transversely isotropic with respect to the x3-axis), and
when just 2. = 1, the material has cubic in-plane symmetry. Positive
definiteness of the strain energy density requires ;. > 0 and - I < p < 0.

The singular crack tip fields are contained in the work of Sih et al. (1965).
Here, mode I and II stress intensity factors are defined such that (2.1) and
(2.2) remain in effect, where the functions d!- and d," now depend on ). and
p as well as 0. The displacements of the crack faces behind the tip are

(62, 61) = (;,-/ 4KI, 2) 1 /4K 1)8nb,,[r/(27r)]" 2, (2.15)

where n = [(1 + p)/2]" 2 . The energy release rate for straight-ahead crack
advance is

G ,b n() -1/4K2 + ),-1/4K 2) (2.16a)

or, equivalently, in a notation used in the composites literature, as G =

G, + Gx1 , where

G, = blnA-V/ 4K2, GI = biln- 1/4K2 . (2.16b)

A crack kinking analysis as extensive as that described for the isotropic
material has not been performed for orthotropic materials. Many such
materials have strongly orthotropic fracture properties, wood and lami-
nated composites being well-known examples. When kinking occurs, it
often does so at a right angle to the plane of the crack (ie., Q = 900 in Fig. 1)
along the plane of the grain or a laminate. Suo et al. (1990b) have shown
that for Q = 90' the generalization of (2.6) is (neglecting T)

K I' = c11 )- 3/SK , + c122-1"8 Kn1 , (2.17)

Kil c2 1 "K1 + c22 2'•'IK 11 .

The c's depend on p, but this dependence is rather weak.
The energy release rate of the kinked crack tip, G', is related to KI and

K1 by an expression similar to (2.16), i.e.,

G' = b22 nO(/ 4 Ki2 + ),1/ 4A'l2), (2.18)
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FiG. 4. Normalized ratio of energy release rates for orthotropic material.

where )., n, and p remain defined as before. Thus, the ratio of the energy
release rates for the competing trajectories can be obtained from (2.16)-
(2.18) as

G [ 1+ .2•' 1/4 C2(2.19)

c 2 + 2(cc,,2 + C21 c22)• + (c12 + C2 2 .1 9

where C = 1/44K,,/K,. This ratio is plotted in Fig. 4. Note that it depends on
the relative proportion of Kil to K, but not on their magnitudes.

Suppose the main crack tip is subject to a mode I loading (K, > 0,
K11 = 0). Let 1-0 be the material toughness associated with straight-ahead
crack advance, and F90 be that associated with crack advance by kinking
with K = 900. (Note from (2.17) that the tip of the kinked crack is subject
to mixed mode with K,/K• = ;, /4c221/c. Thus 190 must represent the
mixed mode toughness for cracking parallel to the x2-plane.) If

G ro
Gt 190

the crack will advance straight ahead since the condition G = F0 will be
reached before G' = F9o. The crack will advance by kinking at 90° if the
inequality is reversed. From Fig. 4, it can be seen that the condition on the
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toughness ratio for kinking is

Fq,
- < f(p);. (2.20)r,,

wheref(1) = 0.26. f(1/10) = 0.29, and.f(10) = 0.16.

C. INTERFACE CRACKS

The emphasis of much of this chapter is on the mechanics of interfacial
fracture and applications. This section introduces some of the basic results
on the characterization of crack tip fields and on specification of interface
toughness. If an interface is a low-toughness fracture path through joined
solids, then one must be concerned with mixed mode crack propagation
since the crack is not free to evolve with pure mode 1 stressing at its tip, as
it would in an isotropic brittle solid. The asymmetry in the moduli with
respect to the interface, as well as possible nonsymmetric loading and
geometry, induces a mode 2 component. The competition between crack
advance within the interface and kinking out of the interface depends on the
relative toughness of the interface to that of the adjoining material. This
competition will be addressed at the end of this section, but first it is neces-
sary to consider how mixed mode conditions affect crack propagation in the
interface. The article will focus on isotropic materials. Extensions to
anisotropic materials are reviewed in Suo (1990a) and Wang et al. (1990).

1. Crack Tip Fields

Consider two isotropic elastic solids joined along the x1-axis as indicated
in Fig. 5 with material I above the interface and material 2 below. Let P,,
E, and vi (i = 1, 2) be the shear modulus, Young's modulus, and Poisson's
ratio of the respective materials, and let Ki = 3 - 4vi for plane strain and
Ki = (3 - v,)/(l + vi) for plane stress.

Dundurs (1969) has observed that wide class of plane problems of
elasticity for bimaterials depend on only two (rather than three) nondimen-
sional combinations of the elastic moduli. With the convention set in Fig. 5,
the Dundurs' elastic mismatch parameters are

Pu(K, + 1) - U 2 (K 1 ± 1) P 1,(K 2 -) - u 2 (Ki - 1)
=and + = + +(K 2 ±1) + 2(K1 + I)p1l(K 2 + 1) + PIA2K1 + 1) .1/2+1)+]2K+1"

(2.21 )
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A
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#2

FIG. 5. Geometry and con\entionw for an interface crack.

A more revealing expression for a is

a = (Er - E) I+ E=), (2.22)

where E=_ El/(1 - v2) in plane strain and E1i = E, in plane stress. Thus, a
measures the mismatch in the plane tensile modulus across the interface. It
approaches +1 when material 1 is extremely stiff compared to material 2,
and approaches - 1 when material I is extremely compliant. Both a and #5
vanish when there is no mismatch, and both change signs when the
materials are switched.

The parameter .8 is a measure of the mismatch in the in-plane bulk
modulus. In plane strain,

I u1(1 - 2v 2) - p2(1 - 2v,) (2.23)
2 91(0 - v2) + 2(1 - v)

Thus, in plane strain, ,8 vanishes when both materials are incompressible
(vI = V2 = 1/2), and 85 = a/4 when v, =- v = 1/3. In plane stress,# = a1/3
when v, = v2 = 1/3. When v, = v2, a is the same in plane strain and plane
stress.

In plane strain, the physical admissible values of ae and 85 are restricted to
lie with;, q nprpllelogram enclo-ed bv a = ±_1 and a - 4/5 = ±1 in the
(a, /f) plane, assuming nonnegative Poisson's ratios. The range of a and /
in plane stress is somewhat more restricted. Representative material com-
binations are plotted for plane strain in Fig. 6, in every case with the stiffer
material as material I so that ae is positive. This plot is similar to one given
by Suga et at. (1988). Note that most of the (a, /f) combinations in Fig. 6 fall
between / = 0 and ft = oi/4. Combinations that satisfy /3 = 0 give rise to
simpler crack tip fields than combinations with P e 0, and special attention
will be paid to this restricted family of bimaterials in a separate section
following this one.
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Fic. 6. Values of Dundurs' parameters in plane strain for selected combinations of
materials.

Solutions to bim ,al interface crack problems were presented in the
earliest papers on Liie subject by Cherepanov (1962), England (1965),
Erdogan (1965), and Rice and Sib (1965). Williams (1959) investigated the
singular crack tip fields. Here, the notations and definitions of Rice (1988)

for the crack tip fields will be adopted since these reduce to the conventional
notation when the mismatch vanishes. Take the origin at the crack tip, as in
Fig 5, with the crack flanks lying along the negative xl-axis. The dominant
stress singularity for any plane problem in which zero tractions are
prescribed on a portion of the negative x1 -axis ending at the origin is of the
form

a•=Re[Kr'E](2rnr)-"2 -a~,'(O e.) + Im[KrIc](2,rr)-/ 2 -oa~~(,' e), (2.24)

where i = xI-l, r and 0 are defined in Fig. 5, and

The complex interface stress intensity factor K = K3 + iK2 has real and
imaginary parts K1 and K2 , respectively, which play similar roles to the con-
ventional mode I and Mode II intensity factors. The quantities U,',B and a,
are given by Rice et al. (1990); they reduce to the corresponding quantities
in (2.1) when c = 0.
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The singular fields are normalized so that the tractions on the interlace
directly ahead of the tip are given by

c,, + 1U1 2 = (K1 +~ iK,)(27,r)- Yr' (2.26a)
or

a,= Re[Kr'"j(27rr) , a12 = lm[A'r'"(27rr)- (2.26b,)

where r"~ = cos(E In r) + i sin(e In r). This is a so-called oscillatory singu-
Jarity, which brings in some complications that are not present in the elastic
fracture mechanics of homogeneous solids, as will be discussed in detail
later. The associated crack flank displacements a distance r behind the tip,

6i= ui (r, 0 = )7) - ui (r, 0 7r-), are gi ven by

62, + 01 (K2 + iK,) (' r (.7
- (I + 2iE) cosh(7rc,) E. y 2 r(227

where

- + (2.2811

The energy release rate for crack advance in the interface is (Malyshev and
Salganik, 1965)

0 (1 2l
G -E (KI + K2), (2.29)

which reduces to (2.5) in the absence of mismatch. Equations (2.27) and
(2.29) can be re-expressed using the connection 1 _ '6 =I/cosh 2(7re).

To help motivate the application of the crack tip fields to characterize
interface toughness, it is useful to give two examples of stress intensity
factors for solved problems. The problem of the isolated crack of length 2a
lying on the interface between two remotely stressed semi-infinite blocks
(see Fig. 7a) was solved in the early papers cited previously. For the right
hand tip of the crack,

K,+if: + ic')(l + 2ic)(7ra)l / 2 (2a) t (2.30)

This particular set of intensity factors depends on the elastic mismatch only
through c and, by (2.25), is independent of a. The problem of the infinite
double cantilever beam (see Fig 7b) loaded with equal and opposite
moments (per unit thickness perpendicular to the (1, 2) plane) was solved by
Suo and Hutchinson (1990) as the special case of a more general solution
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FIG. 7. Tw1vo basic interface crack problems.

presented in Section II. The solution is

K, + iK, = 2\,3Mh- 3"'•`(1 - 6 2)-1' 2e"'* , (2.31)

where the function wo*(a, fi) is displayed in Fig. 8.

2. Crack Tip Fields and Interface Toughness with fl 0

When ,6 = 0 (and thus e = 0 by (2.25)), (2.26) becomes

(a22 , a1 2) = (K1 , K2)(2rr)- 1/2 (2.32)

and (2.27) reduces to

(62, 61) = (8/E.)(K1 , K2)[r/(27r)]" 2  (2.33)

The interface stress intensity factors K, and K2 play precisely the same role
as their counterparts in elastic fracture mechanics for homogeneous, iso-
tropic solids. The mode I component K, is the amplitude of the singularity
of the normal stresses ahead of the tip and the associated normal separation
of the crack flanks, while the mode 2 component K2 governs the shear stress
on the interface and the relative shearing displacement of the flanks.

When # • 0, the decoupling of the normal and shear components of
stress on the interface and associated displacements behind the tip within
the zone dominated by the singularity does not occur. When ,6 * 0, the
notions of mode I and mode 2 require some modification. In addition, the
traction-free line crack solution for the displacements (2.27) implies that the
crack faces interpenetrate at some point behind the tip. Both of these
features have caused conceptual difficulties in the development of a
mechanics of interfaces. For this reason, we have chosen to introduce the
elastic fracture mechanics for bimaterial systems with fl = 0, either exactly
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FiG. 8. Phase factor w* for the problem of Fig. 7b.

or as an approximation. The extension for systems with ,8 e 0 will be given
in the following section, where it will also be argued that the effect of
nonzero P8 is often of secondary consequence.

When ,8 = 0, take the measure of the relative amount of mode 2 to mode
1 at the crack tip to be

V/= tan-'(K 2/K,). (2.34)

The finite crack in the infinite plane, (2.30), gives
tan-I(a*•2/a0), (2.35)

while the double cantilever beam loaded by equal and opposite moments,
(2.31), has

W= * *(, 0). (2.36)

The double cantilever has svmmetric geometry and loading; the asymmetry
is due entirely to the elastic mismatch. Note from Fig. 8 that the specimen
is in mode I when a = 0, as it must by symmetry, but develops a substantial
mode 2 component when the elastic mismatch becomes significant.

Efforts to measure interfacial toughness under mixed mode conditions go
back some years (e.g., Trantina, 1972, and Anderson et al., 1974), as
reviewed by Liechti and Hanson (1988). Parallel efforts have also been
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underway to develop mixed mode fracture specimens designed to measure
the delamination toughness associated with pi\ separation in polymer-
matrix composites le.g., Kinloch, 1987). A series of recent experiments
(Cao and Evans, 1989; Wang and Suo, 1990; and Liechti and Chai, 1990a)
have focussed on the interface between epoxy and glasses, metals and
plastics. Thouless (1990b) has carried out mixed mode toughness experi-
ments for crack propagation in the interface between a brittle wax and
glass. In all these systems, the interface toughness is not a single material
parameter, rather it is a function of the relative amount of mode 2 to
mode I acting on the interface.

The criterion for initiation of crack advance in the interface when the
crack tip is loaded in mixed mode characterized by // is

G = F(,). (2.37)

The toughness of the interface, F(V), can. be thought of as an effective
surface energy that depends on the mode of loading. Condition (2.37) is
also assumed to hold for quasi.;ratic crack advance when crack growth
resistance effects can be disregar-led.

Data from Wang and Suo (1990) for a crack in a plexiglass/epoxy
interface is shown in Fig. 9. This data was obtained using a layer of epoxy
sandwiched between two halves of a Brazil nut specimen. The specimen,
which will be considered later in Section IV.C.2, enables the experimental.st
to vary the mix of loading from pure mode I to pure mlole 2 by varying the
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FiG. 9. Interface toughness function for a plexigtass (#I)'epoxy(42) interface. Obtained
using a Brazil nut specimen by War,: and Suo (1990).



,li.i\e Alodt Cracking iii Layered .latierials 79

angle 0, of the compression axis (see the insert in Fig. 9). For the plexiglass
(# 1) epoxy(#2) intcrface in plane strain,

a -0.15, 6 =-0.029, c = 0.009. (2 .38)

The error in taking [5 = 0 is negligible for this svstcnr .,s will be clear in the

next section. Note, for example, toat the error in G in (2.29) from this
approximation is less than 0.1 o.

3. Phenomenoliogcal Characterization of Interface Toughness

A micromcchanics of interface toughness is not far advanced. An

overview of various mechanisms responsible for the strong dependence of
interfaced toughness on mode mixity is given by Evans et al. (1990). Two

primary mechanisms are asperity contact and plasticity. Asperities on the

fracture surfaces will tend to make contact for some distance behind the tip

when mode 2 is present along with mode 1. A micromechanics model of

shielding of the tip due to asperity interaction was presented by Evans and

Hutchinson (1989). That model led to a prediction of F(Vg) in terms of a

nondimensional measure of fracture surface roughness. Crack tip plasticity

also depends on y/, with the plastic zone in plane strain increasing in size as

I ý, increases, with G held fixed (Shih and Asaro, 1988). When ;,n interface

between a bimrterial system is actually a very thin layer of a third phase, the

details of the cracking morphology in the thin interface layer can also play

a role in determining the mixed mode toughness. Some aspects of cracking

at the scale of the interface layer itself will be discussed in the final section

of this chapter. The approach for the time being is that the interfa,%e has

zero thickness and is modeled by the toughness function F((,') v. Iich, in

general, must be determined by cxperiment.
A simple, one parameter family of mixed mode fraction criteria that

captures the trend illustrated by the data in Fig. 9 is

E-'(K2 + KK') = Gc. (2.39)

The parameter A adjusts the influence of the mode 2 contribution in the

criterion. The limit . = I is the "ideally brittle" interface with initiation

occurring when G G' for all mode combinations. This limit coincides
with the classical surface energy criterion. When A = 0, crack advance enly

depclids on the mode 1 component. For any value of A, G' is the pure
mode I toughness. The criterion can be cast it the form (2.37) where the

mixed mode toughness function is

F(14) = Gc[l + 1) - 1)sin 2 I 1. (2.40)
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FiG. 10. A famil\ of interlace toughness functions and comparison vith data tor
plexitlass epox. interface (represented b\ the broken line).

The toughness is plotted as a function of V in Fig. 10 for various values of

).. Included in this figure is the data for the plexiglass/epoxy interface.
which is approximately represented by the choice . = 0.3. This particular
interface displays a toughness that is far removed from ideally brittle

behavior.
"I .e family of criteria (2.39) was extended to include a mode 3 contribution

by Jensen et al. (1990). In a slightly different form, this family of criteria
has been used for some time to characterize interlaminar failure in fiber
reinforced composites (cf. Kinloch, 1987). When ,3 0, one can introduce
"components" of G according to

(GI, G0,) = E,'(K', K2), (2.41)

such that G = G, + G2 . Alternatively, for a crack in a homogeneous
orthotropic material, G, and G, can be defined using (2.16). The criterion

(2.39) can be rewritten as

(G1!G') 4- (GiG[) = 1, (2.42)

where G - G'/1. has the interpretation as the pure mode 2 toughness.

Other phenomenological criteria have been proposed to characterize
mixed mode toughness data for interlaminate fracture (e.g., Kinloch, 1987).
Two alternatives to (2.40) are now given which have qualitative fcaturfs

'The components can be regarded as the work of the normal and shear tractions on the

interlace through their respective crack face displacements as the crack ad, ances. This decom-
position does not exist .hen [I e 0,
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FiG. 11 Alternatie c famitie, of interface toughnes, function'.

that may more realistically reproduce data trends for interfacial fracture:

F(') = G'1 I + tan2 f(1 - 1 (2.43)

and
F(i) = Gcll + (1 - 2.) tan2 V]. (2.44)

These are plotted in Fig. 11. Both coincide with (2.40) in the limit . = 0,
i.e., they reduce to a criterion based on a critical value of K,, independent
of K2 . Both are ideally brittle with A = 1. According to (2.43), the
toughness increases sharply as V -. 90' (mode 2), as opposed to (2.40),
which has the toughness leveling off as V -- 90'. Equation (2.44) models
the toughness as unbounded as y/ -- 900 for all A < 1. While this feature
should not be taken literally, it did emerge in the simple model of mixed
mode interface toughness due to asperity contact of Evans and Hutchinson
(1989). Of the three formulas for F(V/), (2.44) most accurately reflects the
trends of that model.

All three of the interface toughness functions F(V,) are symmetric in ;i'. In
general, symmetry of interface toughness with respect to V' should not be
expected. Some evidence that F(g) is asymmetric for an epoxy/glass inter-
face will be presented in the next section.

4. Interface Toughness with f ;e 0

When ,6 • 0, the notion of a mode I or a mode 2 crack tip field must be
defined precisely, and the possibility of contact of the crack faces within the
region dominated by the near tip K-fields must be considered. As noted by
Rice (1988), a generalized interpretation of the mode measure is the most
important complication raised by the oscillatory singularity, and the
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approach recommended here follows largely alo'wg the lines of one of his
proposals. First, a definition of a measure of thc combination of modes is
made that generalizes (2.34).

Let I be a reference length whose choice will be discussed later. Notine the
stress distribution (2.26b) on the interface from the K-field, define y as

S= tan ' [ m (KP'_ , (2.45)

where K = K, + iKX is the complex stress intensity factor. For a choice of
/ within the zone of dominance of the K-field, (2.45) is equivalent to
(cf. (2.26b))

y = tan- [ _2I. (2.46)

Moreover, the definition reduces to (2.34) when / 0, since I = when
E = 0. When e # 0, a mode 1 crack is one with zero shear traction on the
interface a distance / ahead of the tip, and a mode 2 crack has zero normal
traction at that point. The measure of the proportion of "mode 2" to
"mode I" in the vicinity of the crack tip requires the specification of some
length quantity since the ratio of the shear traction to normal traction varies
(very slowly) with distance to the tip when # # 0.

The choice of reference length I is somewhat arbitrary, as will be made
clear in the following. It is useful to distinguish between a choice based on
an in-plane length L of the specimen geometry, such as crack length, and a
choice based on a material length scale, such as the size of the fracture
process zone or a plastic zone at fracture. The former is useful for discuss-
ing the mixed mode character of a bimaterial crack solution, independent of
material fracture behavior, while the latter is advantageous in interpreting
mixed mode fracture data, as will be discussed. When there is the need to
keep the two types of choices clearly distinct, the notation (u/, 1) will be used
for a choice based on the specimen geometry and (i,, I) will be reserved for
a material-based choice.

The solution for the complex stress intensity factor to any plane elasticity
problem for an interface crack will necessarily have the form

K = (applied stress) x FL">2-', (2.47)

where L is some in-plane length, such as crack length or uncracked ligament
length, and F is a complex-valued, dimensionless function of dimensionless
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groups of moduli, and iti-plane length quantities. Equations (2.30) anid (2.31)

are two examples. The term KI" in the definition of v wiII therefore al\wav,,

involve a dimensionles,, combination such as W1' =- expju;, ln(/ L). I-or
example, the bimaterial double cantilever beam specimen "(231) ha"

v1/- (ci, ti ) + i: ln(1, h), (2.48)

which generalizes (2.36).

The freedom in the choice of I in the definition of t,, is a consequence of
the simple transformation rule from one choice to another. Let Vi/ be

associated with 1,, and V1, with 1. From the definition in (2.45) one can

readily show

Y1, = V1 + t ln(/,//,). (2.49)

Thus, as noted by Rice (1988), it is a simple matter to transform from one
choice to another. In particular, toughness data can readily be transformed,
as will be discussed in the following.

Let i denote a length characterizing the size of the fracture process zone

or, perhaps, the typical size of the plastic zone at fracture, and let ý, be asso-

ciated through (2.45). Since small-scale yielding or a small-scale fracture
process zone is assumed, i necessarily lies within the zone of dominance of
the K-field. Given the choice 4, the criterion for interface cracking can again

be stated as (2.37), i.e.,

G = r(I,, 1), (2.50)

where the implicit dependence of the toughness function on i has been

noted. In words, F(V,, 1) is the critical value of the energy release rate needed
to advance the crack in the interface in the presence of a combination of

tractions whose relative proportion is measured by 0,. By (2.49), change in

one choice of length in the definition of V/ to another only involves a shift

of the V-origin of F according to

F(V/ 2 , /2) = F(VI + c In(/,//,), /,), (2.51)

as depicted in Fig. 12. When - is small, the shift will generally be negligible
even for changes of I of several orders of magnitude. This is the case for the
plexiglass/epoxy interface (2.38). An illustration for which the --effect is

not negligible in reporting interface toughness is discussed shortly.
In discussing the mixed mode character of a given elasticity solution, it is

generally convenient to identify / with an in-plane length of the geometry,
such as L in (2.47). For example, if for the double cantilever beam specimen
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FIG. 12. Procedure for shifting toughness function from one choice of reference length to

another.

one picks 1 = h, then by (2.48),

V = *(cW, ( ), (2.52)

which is independent of the size of the specimen! t This is necessarily a

feature of any choice of I that scales with an in-plane length. By contrast,
for a choice i that is fixed at some microstructural length, 0, varies with
specimen size, e.g., for the double cantilever specimen,

, = co*(a, fi) + e ln(l/h). (2.53)

This reflects the fact that the ratio of a 12 to a 22 at a fixed distance r = i
ahead of the tip varies as the specimen size changes. Standard arguments
underlying the mechanics of fracture, based on Irwin's notion of
autonomous crack tip behavior, require that F(t,, i) be independent of
specimen size (assuming, of course, that small scale processes are in effect),
while F(V, /) will depend on specimen size if e * 0 when I scales with
specimen size. This property, together with the interpretation of mixity in
(2.45) in the vicinity of the fracture process zone, favors the choice of a
material-based / for presenting toughness data.

Liechti and Chai (1990a, b) have developed a bimaterial interfacial
fracture specimen that is capable of generating the interface toughness func-
tion f over essentially the full range of V/. A schematic of their plane strain

specimen is shown in the insert in Fig. 13. The in-plane length of the
specimen is long compared to the thickness h of each layer. The bottom

'The fact that I = h obviously lies outside the zone of dominance of 'he K-field is of no
consequence. The essential point is that any choice of I is acceptable as ig as it is recorded
along with the result for wi, and as long as one is cognizant of the transtormation rule.
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FIG. 13. Data of Liechti and Chai (1990a) for an epoxy (#1) glass(#2) interface: •i is based
on l1 = 12.7 mm and 0, on i = 127 pm. The solid curves are %(%,), where F is given by (2.44).

surface is rigidly held and the upper surface is attached to a rigid grip that
can impose a horizontal, U, and vertical, V, in-plane displacement. The
solution to the problem when the layers are infinitely long and the interface
crack is semi-infinite was used by Liechti and Chai to obtain the values of
K, and K2 (and G and V) associated with the measured combinations of U
and V at which the crack propagated in the interface. For plane strain, the
solution is (see Section I11I.C)

*KK - #2 h- 11h/2 -e'w(cV + iU)

K0 + iK = (1 - f, 2 )1/2(•I + P2)"/2LU 1(l - v2) + p 2(l - vI)]'/ 2 " (2.54)

where w is a real quantity that depends on p,/9,, v1 , and v, and

{pi= l 2(/- 2 + P2) 1'1.1. (2.55)c = j(1 - 21'20/1 - VA) + P2[10 - 21v,)/(l - vj)] (.5

Let y measure the relative proportion of U to cV applied to the specimen,
and define it by

y = tan-1 [Ui(cV)]. (2.56)

Then, with / as the reference length, (2.45) gives

V/ = y + w + E ln(i/h). (2.57)
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The data for F(ý,. Ih in Fig. 13 was measured oy Liechti and Chai for an

epoxy(# l)/glass(#2) interface with the following properties for the system:

E, = 2.07 GPa, E, = 68.9 GPa, v, = 0.37, v, = 0.20, and t = 12.7 mm.
The plane strain Dundurs' parameters and the oscillation index are

a = -0.935, /3 = -0.188, and - = 0.060. (2.58)

For this system w = 16' (see Section III.C). Liechti and Chai took
i = 12.7 mm in their definition of V/, coinciding with the thickness h of

the layers.
Liechti and Chai recorded plastic zones in the epoxy to be approximately

on the order of 1 pm when V1 =_ 0' and 140,um when e, _= 900. If instead of
1= 12.7rmm, 7 is chosen to be two orders of magnitude smaller (i.e.,
I = 127pum), the shift in the 0-origin from (2.49) or (2.51) is -15.8'. This
choice seems somewhat more natural in terms of the interpretation given
earlier since now 1 lies well within the zone of dominance of the K-field and
has a microstructural identity. This choice also places the origin of the
V,-axis (i.e., "mode 1" for this choice of /) at the approximate minimum of

F and roughly centers the data, as can be seen in Fig. 13. Nevertheless, some
asymmetry in F with respect to Cy still persists. Included in this figure is the
toughness function F(t) from (2.44) for two choices of ), with G' chosen

to coincide with the measured value at 02 = 0. Apart from the asymmetry
in the data, a A-value between 0 and 0.5 would seem to give an approximate
characterization of the data over the range of (Y shown. Other important
aspects of the mixed mode fracture behavior of this system have been
discussed by Liechti and Chai (1990a). These include possible correlation of
the strong increase in toughness with mode 2 with either fracture surface
roughness or plasticity, and the role of contact between crack faces when
the loading becomes dominantly mode 2.

When interpenetration of the crack faces is predicted on the basis of the
formulation for a traction-free line crack, the consequences of contact must
be taken into account in any application of the solution to fracture. The

bimaterial problem with 63 e 0 is unusual in that interpenetration of the

faces always occurs according to (2.27). This feature of the interface crack
problem was noted in the earliest papers on the subject, and solutions to
specific problems posed with allowance for contact have been produced

(Comninou, 1977, and Comninou and Schmueser, 1979). Fortunately, under
most loadings likely to be of concern, the contact zone predicted by the
elasticity solution is tiny compared with relevant near tip physical features
such as the fracture process zone or the plastic zone. The larger the
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proportion of mode 2, the more likely is contact of the crack faces to be

an issue.'

To see this, a rough estimate of the size of the contact zone is obtained.
The estimate is that of Rice (1988), as elaborated on by Wang and Suo

(1990). Here, however, emphasis is placed on a definition of ý, in (2.45)

based on a microstructural scale length i. For r < ,, it will be assumed that

the fracture process or other inelastic effects supercede linear elasticity.

Using the definition of V/ in (2.45), one can readily show that the normal

crack face displacement in the near tip region from (2.27) is

,- = 16, + i6,1 cos[Vi + E ln(r/l) - tan-1(2c)]. (2.59)

Consider the condition for the crack to be open (6,_ > 0) for i < r < L!AO.

The factor 1/10 is arbitrary, but the near tip fields should not be expected
to retain accuracy for r larger than some fraction of L. If contact occurs
outsiae the preceding range, it must be assessed using the full solution. If

E > 0, the stated condition is met if

-- + 2E < 0, <- + 2e - Eln (2.60)
2 2 (

where tan-'(2c) has been approximated by 2e since tEl <- 0.175. For e < 0,
there will be no contact over the specified region as long as

-+ e2- Eln < (,<-+2e. (2.61)
2 2

The E-dependence of the above constraints is inconsequential for many
interf4.. -- svstems. For the epoxy/glass system (2.58), which has a relatively

large E-value, (2.60) becomes -83.1 0 < , < 89.00 for L/I= 100 and

-83.10 < 0' < 73.2° for L/1 = 104. The difference between the limits
obtained above and those derived by Rice (1988) and Wang and Suo (1990)
is due mainly to the use in the present work of the material-based definition
of V1, rather than V/ defined in terms of a length L characterizing the

specimen. The combination of the contact due to nonzero E and the contact
arising from fracture surface asperities has not been modeled. The inter-

action between these two effects acting in concert should be important for
mixed mode loadings near the limits listed above.

tNow the contact is not due to asperity roughness on the crack faces generated by the
fracture process that was discussed earlier. Here, the crack faces are imagined to be smooth
and "just touching" in the unloaded state.
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Fi(G. 14. Conventions for a crack kinking out of an interface.

5. Kinking Out of the Interface

The analysis of kinking parallels that was discussed in Section A for the
isotropic elastic solid, and the results presented in what follows are taken
from He and Hutchinson (1989a) and He et at. (1991). As depicted in
Fig. 14, a semi-infinite crack lies along the interface with its tip at the origin.
Prior to kinking (a = 0), the parent crack is loaded with a complex interface
stress intensity factor K = K, + iK2 with mixity V defined by (2.45) relative
to some reference length 1. For definiteness, V/ will be taken to be positive
with kinking down into material #2 as shown in Fig. 14. Negative qi-

loadings with upward kinking can be analyzed by exchanging the materials,
i.e., switching the signs on a and 1t.

As in the analysis for the isotropic solid, the energy release rate G for
straight-ahead advance in the interface is compared with the energy release
rate G' for a crack with a segment of length a kinking at an angle 0 to the
interface. The energy release rate G for advance in the interface is given by
(2.29). The conventional mode I and mode II stress intensity factors at the
tip of the kinked crack tip are related to K by

K, + iKnI = c(Q, a,/fl)Ka'" + J(Q, a,/3)Kaa'- + b(K2, a, #/)Ta1/2, (2.62)

where T is the nonsingular contribution to a,, in material #2 at the parent
crack tip prior to kinking. The T-stress may arise from remote applied load
or it may be present as a residual stress. The functions c, d, and b are
complex-valued; c and d are tabulated in He and Hutchinson (I 989b), while
b is given in He el al. (1991).

The energy release rate at the kinked crack tip, Gt , is given by (2.5), and
the ratio of the two release rates has the form

G/G' F((O, 0, n, a,/J), (2.63)
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FIG. 15. Ratio of energy release rate for advance in the interface to the maximum energy
release rate for the kinked crack for various levels of elastic mismatch, all with f? = 0.

where qi = T[a/(E.G)]1/2 and

/= =V + E ln(all). (2.64)

The complete expression for F is given by He et al. (1991). The a-dependence
of this ratio appears through )7, and weakly through 0.

The ratio G/Gtax is plotted against V in Fig. 15 for various values of a,
in each case for ,= 0 and 7 = 0. Here, Gmax is the maximum of G' with
respect to kink angle Q for a given vg. As in the case of the homogeneous
isotropic kinking problem, there is very little difference between the kink
angle that maximizes Gt and that which is associated with K 1 = 0. The only
exception occurs when material 2 is very stiff compared with material I
(a < -0.67). Then, there exists a range of yi for which the maximum G'
occurs at small kink angles while the kink angle associated with Kit = 0 is
near 450 (He and Hutchinson, 1989a). With F(V') denoting the toughness
function of the interface and F, denoting the mode I toughness of material
2, kinking will be favored over continued interface cracking if

G/G.1ax < F(V/)/F,, (2.65)
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and conversely. Thus, the curves of G;G,',, in Fig. 15 also give the
transition value of interface to substrate toughness, F()/rF, separating the

tendency for kinking over interface cracking.
The effect of 13 on the ratio in (2.63) is relatively weak, as discussed by He

and Hutchinson (1989a). The dependence on a through 0 in (2.63) call be

interpreted as a shift in the phase of the mode of loading on the interface

crack. The influence of ql is given b\ He et al. (1991), and is qualitatively
similar to that shown in Fig. 2 for the isotropic case.

11. Elasticity Solutions for Cracks in Multilayers

In studying cracks in multilayers, it is found that the crack driving force
for many situations is essentially independent of the crack size. This steady-
state concept and its implications are elucidated with two examples.
Heuristic conclusions thus drawn allow emphasis to be placed on various
steady-state problems. Several elasticity solutions for mixed mode cracks in
multilayers are gathered in this chapter. The geometries can be found in the
figures in this chapter. These solutions were obtained in recent years by

analytical and numerical methods, and have been used to calibrate fracture

specimens and assess technically representative structures. Details of appli-
cations will be given in the subsequent chapters. We will omit several
classical exact solutions of interface crack problems obtained in 1965 by
Erdogan, England, Rice and Sih. These solutions and some extensions have

been reviewed by Suo (1989, 1990a).

A. CONCEPT OF STEADY-STATE CRACKING

For applications to be discussed in the following chapters, the concept of

steady-state cracking results in a significant simplification. The purpose of

this section is to discuss the concept and its implications using two examples:
tunneling in adhesives and delamination in unidirectional composites. We
try to convey that the steady-state solutions developed in later sections,
although highly idealized, can be used to model real-world phenomena.

1. Tunneling in Adhesives

Consider residual stress cracks in adhesives as illustrated in Fig. 16. A

thin, brittle adhesive layer is bonded beiween two substrates. Biaxial
residual stresses usually develop in the adhesive layer during the bonding
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Fio. 16. A thin adhesive layer bonded between two substrates is under biaxial tensile
stress. A crack is tunneling through the layer. The substrate on the top is removed for better
visualization.

process. In glaze bonding, for example, the ceramic parts are coated with a
glass; the parts are placed in contact and heated above the melting tem-
perature of the glass, and then cooled down to the room temperature. For
such inorganic adhesives, a major source of the residual stress is thermal
expansion mismatch. The residual stress is tensile when the adhesive has
larger thermal expansion coefficient than the substrates, which causes
cracks to tunnel through the adhesive. Similar cracks are observed in hybrid
laminates consisting of alternate tough and brittle sheets, and in coatings or
reaction product layers between reinforcements and in matrices in brittle
composites. Cracks may penetrate into substrates if the latter are brittle.
Debonding is also possible at the intersection of the interfaces and cracks.

Illustrated in Fig. 16 is a crack, nucleated from a flaw, tunneling through
the layer. Substrate penetration and interface debonding are assumed not to
occur. Crack nucleation is a rather complicated process: A gas bubble
would behave differently from a crack-like defect in activating a tunnel.
However, as a crack grows long compared with layer thickness, the problem
becomes much better defined. A steady-slate is reached: The tunnel front
maintains its shape as it advances, and the energy released per unit advance
no longer depends on the tunnel length, nor on the initial flaw geometry.
The steady-state problem is still three-dimensional in nature, since the shape
of the front should be determined so that the same mode I stress intensity
factor is reached at every point along the front. However, this stress intensity
factor itself can be calculated without knowing the shape of the front by
using a two-dimensional elasticity solution. This attractive possibility
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follows from the fact that the energvy released per unit length of tunneling

equals the energy released to form a plane strain crack traversing the layer,

per unit width of crack For adhesive and substratcz, with identical elastic

constants, the solution (Suo 1990b)

K, - -- '/- 0.89o\h (a./h - 00). (3.1)

As indicated, the result is valid for the steady-state, that is, when the tunnel

is long compared with the thic:ness of the adlhesive laver.

Another limiting case with rcadily available exact solution is a penny-
shaped crack of diameter It. The stress intensity factor along the entire
circular front is the same (so it may be thought of as an incipient tunnel),
having the value (Tada ( al. 1985)

K, = -,2/ircuvh = 0.80c\ht (a/h = 1). (3.2)

Observe that the two results just cited are not very different, suggesting only

a mild dependence on a/h. The steady state is practically attained after the

tunnel length exceeds a few times adhesive thickness. If the penny-shaped
crack is representative of initial flaws, the critical stress needed for the

steady-state propagation is only about 10/o below the stress to initiate
unstable growth from the flaw.

Several implications follow. The tunneling, once activated, would never

arrest until it meets another crack or other obstacles. Consequently, under
a biaxial stress, a connected tunnel network would emerge, surrounding
islands of intact adhesive materials; see Zdaniewski et al. (1987) for

micrographs. Another implication is that the transient dependence on a/h,

which can only be obtained from a complicated three-dimensional analysis,
would be unnecessary for most practical paurposes. Instead, the steady-state
solution provides a conservative, yet still quite tight, design limit. For
example, given the substrate and adhesive materials (so the toughness and

mismatch stress are fixed), (3. 1) would predict the thickest adhesive that can

be used with no tunneling cracks. More details of this problem are given in
Section VIIl.

2. Delamination near a Surface Flaw

As a second example, consider the delamination near a surface notch in

a unidirectional composite; see the insert in Fig. 17. The incipient delamina-
tion is not well characterized for two reasons. First, the driving force
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FiG. 17. The insert shows a delamination nucleated trom a surface notch and driver, by a

longitudinal tension. The normalized energy release rate is plotted against the effective

delamination length A)'aah for several values Of notch size h./11. The energy release rate

attains thc. steady-state as soon as ,;.' 4a,/h > 1.5.

depends on the notch geometry. Secondly, composites usually exhibit R-

curve behavior: Fracture resistance increases as the crack extends. 'This can

be caused by bridging fibers or matrix ligaments in the wake. However,

once the delamiation is sufficiently long, a steady state should be reached:

Both driving force an,-' toughness become independe:,. -" the delamination

length and initial flaw geometry. The following example establishes the

transient zone size for the driving force. The R-curve behavior will be

discussed in Section IV.D).

Figure 17 shows a delamination crack nucleated from a sharp notch and

driven by an axial tension. Similar problems have been studied by several

authors (e.g., O'Brien, 19S4, Thouless et al., 1989). The solution that

follows is taken from Suo et al. (1990b). The delamination is mixed mode.

The energv release rate takes the 6:mensionless form

E, G O, H )
- G = " ;, 1/4 Ph (3.3)
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where h,1 1- l is the effective Youn,,'s niodulu, in t he lonsitudinat

direction. . and p are orthotropv parameters, all defined in Section 11.13.
The dimensionless function g depends on the indicated ,ariables. Notice
that ;. and a,,h affect the final results onl\ through tihe product l -a h,
as identified in the original paper usin2 orthotropy res,.alint. Thi, detail
turns out to be important in understanding the orthotropy effects, as \ýill
be seen shortly. Figure I"7 plots the solution obtained b\ finite elements.
with p = 1.

Observe that the energy release rate becomes independent of /'. 'a h1
when the delamination is sufficiently long. An inspection of Fie. I7 suu.es'ts
that the transient-zone size is given by ' ;u.,h I: 1.5, or

a/h - 1.(=1i -) ,(3.4).

where ET -= lb-, is the effective Young's modulus transverse to the fiber
direction. For most polymer co'..posites and woods, ( 1 Er): 2. Con-
sequently, a split longer than about three times the notch depth is subject to
a constant driving force. Equation (3.4) also reveals that elastic orthotropy
tends to prolong the transient zone by a factor of (E,/E--)1 '2, as compared
with the isotropic counterpart. Finite element calculations (not shown here)
also indicate that the size of the transient zone is not significantly affected
by p within the practical range, so that (3.4) remains valid for general
orthoi-opic materials.

An accurate approximation for the steady-state mixed mode energy
release rates at the delamination tip in Fig. 17 is (Suo 1990c)

[CG, Gl] -=2 (I + 4r7 + 6171 + 3r/ 3)[cos-w. sin2 lw.,
2E1

(3.5)

2. 1 3 2 - 3)`7, :7 h1/1.

This steady-state solution G = +1 Gil, is indicated in Fig. 17.

In conclusion, the steady-state condition can usually be easily attained in
practice. These steady-state solutions are of unique significance considering
the variety of uncertainties associated , ith the transient statc. Mathemati-
callv, the steady-state concept allows one to bypass sonic messy intermediate
calculations. Although an accurate estimate of the transient-ione ,ize may
not be available for each stead,-state so!ution described in the rest of the
section, we feel that. in copmunction wi:h some heuristic Judgment, these
solutions can be used to assess technical structures.
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FIG. 18. Cross-section of an infinite layer with a half-plane crack. Axial forces and

moments, per unit width, are applied along the three edges.

B. CRACKS IN LAYERS LOADED ALONG EDGES

The problems to be disussed in this section are sketched in Fig. 18. The
layer can be of one material or bimaterial, the material isotropic or ortho-
tropic, the crack along the interface or in the substrate. The relation is
sought between the applied loads and the mixed mode stress intensity
factors.

1. A Homogeneous, Isotropic Layer

Depicted in Fig. 18 is the cross-section of an infinite layer containing a
half-plane crack. The geometry is fully specified by h and H, the thicknesses
of the two separated arms. The layer is isotropic, homogeneous and linearly
elastic, and is subject, uniformly along the three edges, to axial forces and
moments per unit width Pi and Mi. The problem at various levels of
generality has been considered by several authors (Tada et al., 1985;
Williams, 1988; Suo and Hutchinson, 1989b; Schapery and Davidson,
1990). The results in the first two of these references contain conceptual
errors. The complete solution presented below is taken from Suo (1990c).

a. General Solution

The near-tip stresses are consistent with the mixed mode crack tip field,
with stress intensity factors K, and K11 to be determined. Far from the tip,
the three edges are characterized by the linear strain distributions for
elementary beams. The energy release rate equals the difference of the strain
energy per unit length per unit width stored in the edges far behind and far
ahead of the crack tip. Thus,

M112 M+ (3.6)G = •+ 12-• + - tt t h +H) (3.6)
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where E is the effective Young's modulus defined in (2.4). This result may be

derived alternatively by using the J-integral (Rice, 1968: Cherepanox, 19-19).
The preceding energy accounting does not separate the opcning and

shearing components. Tile partition is simplified by hnearitv and dlmen-

Sion/lii v, coupled with the Irwin relaiion (2.5). Consequeti!y, the siress

intensity factors take the form

P M
K, = cos ci + -- sin(c- 7).

\ 2/W L2h'V
(3.7)

P M
Kit- = sinci _ cos(w - 7).

\ 2hU %2h111

All the preceding quantities except wt are determined by elementar\ con-

siderations. Specifically, P and M are linear combinations of the applied

loads:

P = P- CIP 3 - C 2 M 3/h, M = M1 - CM 3 ,

1 6i/I 1 (3.8)
C ln - //+ 1' . (1/,7+ 1)31 C3 = (1/)? + 1)3 7 =h ;

and the geometric factors are functions of 7:

I 1 sin' _

=1 + 4t7 + 6172 + 3q/3, -= 12(l + ?7), -= 6r/2(1 + q).
U V V

(3.9)

Accurate determination of to, which depends only on ?7, is nontrivial.

The elasticity problem was solved rigorously (with the help of numerical
solutions of an integral equation). The extracted w varies slowly with ?7 in

the entire range 0 _< q 5 1, in accordance with an approximate formula

w = 52.10 - 3°/7. (3.10)

This is a linear fit of the numerical solution, and the error is believed to be
within one percent.

b. A Mixed Mode Double Cantilever Beam

Several special cases are discussed here to illustrate the richness of the

solution. First consider a double cantilever beam as in Fig. 19. The

specimen ir mode I if the crack lies on the mid-plane, but mixed mode if the
crack is off the mid-plane. This haw been used recently to study mixed mode
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FIG. 19. The insert shows a double cantiliver beam with a crack off the mid-plane. The
mode mixity (t = tan-'(K11 /K1 ) is plotted against the offset y/b.

fracture of an adhesive layer by Thouless (1990b). On Fig. 19, the mode
mixity, q/ = tan-1 (K11/Kl) = co + y - n/2, is plotted against the offset
y/b. Focus here is on the configurational stability of an homogeneous
specimen when the crack is slightly off the mid-plane as positioned, for
example, in the fabrication of the specimen. As indicated by the sign of K11

near y/b = 0, a crack off the mid-plane will be driven further away from
the mid-plane. The mid-plane crack is thus configurationally unstable.
Crack path stability will be further discussed in Section VIII.

c. Exact Solutions for the Case H = h

Next consider the crack on the mid-plane and subjected to the general

edge loads. The crack path selection is seldom an issue in the composite
testing since cracks are usually confined to run along the fiber direction.
The exact solution for co can be obtained for this case by considering a

special loading MI = M 2 = M and all others being zero. By symmetry,
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FIG. 20. Several exact solutions: (a) a pure mode I specimen (double cantilever beam);
(b) a pure mode II specimen (end-loaded split); (c) a mixed mode specimen (four-point bend);
(d) a mixed mode specimen (crack-lap shear).

KII = 0, which, substituted into (3.7), gives co = cos-'vT(hT7) = 49.10. The

full solution (3.7) can therefore be specialized to

K, =Vr3Ph -r 2 + 2Vr3Mh- 3 / 2, Kil 2Ph- 1 2,
P=P, -±P 3 -¼Mjih, M= MI- *M 3.

Several useful edge loads are illustrated in Fig. 20. The mixed mode energy
release rates listed are valid for an orthotropic material layer with a prin-

cipal material axis coincident with the longitudinal direction. Geometries a
and b are pure mode I and pure mode 11, respectively. Geometries c and d

are mixed mode.

d. Surface Layer Spalling

As the last example, consider a sub-surface crack in a semi-infinite plate
(t7 = 0) as illustrated in Fig. 21. The problem was solved by Thouless et al.
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Fic,. 21. Spalling of a surface layer due to edge loads.

(1987) in a study of impact spalling of ice sheets. The complete solution is

K, = "= [Ph cos + 2V-Mh- 3 2 sin o],
N'2

(3.12)
1 -1/2

KII = -• Ph sin w - 2v'3Mh- C' S cosl],

where w = 52.071. Contrary to one's intuition, a significant amount of
mode 11 component is caused by pure bending. The solution will be used in
Section V to study decohesion of pre-tensioned films and thermal shock
spalling.

2. A Homogeneous, Orthotropic Layer

The same geometry in Fig. 18 was also analyzed for orthotropic solids
(Suo, 1990c). The layer lies in a principal material plane and the crack runs in
principal axis-1 of the solid. The energy release rate expression (3.6) remains
valid but the longitudinal tensile modulus EL should be used, namely,

G= -- COScosw + sin(( + y)] (3.13a)

I 
-sin Mo - cos( + (3.13b)

where P, M, U, V, and y are given by (3.8) and (3.9). The quantity uw
depends on r and p, but not A. An integral equation method was used to
determine uw, and the results indicate that the influence of p within its entire
practical range is below one percent, so that (3.10) is an excellent approxi-
mation for orthotropic materials. When the stress intensity factors are



100 1. I"'. Hutchinson and Z. Suo

needed, the Irwin-type relation appropriate for orthotropic materials (2.16)
must be used.

Notice that all the quantities in the brackets of (3.13) except for (,, do not
depend on material parameters. F-urther. w may be approximated by (3.10).
which is also independent of aly material parameters. Consequently, the
energy release rates of the two modes are essentially the same as their
isotropic counterparts, except that the longitudinal tensile modulus should
be used.

3. A Symmnetric Tilt Strip

Imagine two identical lavers cut from an orthotropic solid at an angle o
to principal material axis-I (Fig. 22). The thickness of the two layers are
equal, designated as h. The compliances sI, s2 ,, s,2, and s66 are referred to
the principal material axes. The two layer,, are bonded to form a symmetric
tilt boundary, with a semi-infinite crack lying along the interface. The tilt
angle is v and the tilt axis, or the crack front, is one of the principal axes of
the orthotropic solid. The general edge loads are applied.

The stress field around the crack tip is square root singular. The stress
intensity factors are defined such that, asymptotically, traction on the grain
boundary varies with the distance r from the crack tip according to

aY = (27rr)- /2-K1 , 'rn. = (27r)-'/ 2K11 . (3.14)

The Irwin-type relation for a crack on the symmetric tilt grain boundary is
(Wang et al., 1990)

G , = [b1 I b2 2 0( + p)12]1/A2 ( - 1/4 COS2 1/4 sin O)K I,

G11 = [bI b22 (0 + p)/2 11  4 sin 2  + ± 1/4 cos2 4;lKl 1,

where the zompliances are referred to the principal axes; see Section II.B.

M1

/, 3 /~Th

"M 2

Fic,. 22. I wo identical grains of an orthotropic crystal form a symmetric tilt boundar%.
with the prir :ipal crystal axis at an angle o from the interface. The sample is under general

edge loads.
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Fi;. 23. A bilayer with a half-plane interface crack. The neutral axis of the composite layer
is indicated.

The analytical solution is found for the problem. Expressed in energy
release rates, it is

G, = 3b'1(P + 2M/h)2/h, G11 = 4b~lP 2/h,
(3.16)

P i= -- P3 -+ M 3/h, M =M 1 - IM 3.

Here, b*', is the compliance in the x direction, which is related to the
principal compliances by

b~j = (b Ib 22 )'/ 2 (2,/ 2 cOs 4 0 + 2,p COS2, sin 2
0 + A-1/2 sin 4 

0). (3.17)

Notice that the energy release rates are identical to the corresponding homo-
geneous, isotropic results, except that the compliance must be reinterpreted.

4. An Interfacial Crack in a Bilayer

Figure 23 is a cross-section of an infinite bilayer with a half-plane crack
on the interface. Each layer is taken to be homogeneous, isotropic, and
linearly elastic. The uncracked interface is perfectly bonded with con-
tinuous displacements and tractions. The bilayer is loaded uniformly along
the three edges with forces and moments per unit width. The problem has
been studied by Suo and Hutchinson (1990), and the numerical solution has
been presented in the entire parameter range. The generality of the edge
loads allows the solution to be used to model a variety of delamination
processes. A special loading case (a splitting cantilever bilayer) is discussed
in Section ll.C.4. The solution will be used to calibrate interfacial fracture
specimens in Section IV.B. 1, and to assess decohesion of pre-tensioned thin
films in Section V.D. Focus here is c- the presentation of the elasticity
solution.
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Far ahead of the crack tip the bilaver may be regarded as a composite

beam. The neutral axis lies a distance hA above the bottom of the beam.

with A being

I + 2 q -i (3.18)

2,1(1 + D7)

where
_E I + h
E - I -' = -. (3.19)

The composite layer is in a state of pure stretch combined with pure bending.

The only nonzero in-plane stress component is r,. The corresponding strain

is linear with the distance from the neutral axis, y, according to

Ex = _ =()3 + h Y" (3.20)

The dimensionless cross-section A and moment of inertia I are

A= +Ir = - - - + + -(A3r3A= +1, 11 [A- ( -1

(3.21)
The energy release rate can be calculated in close form:

G= ( + 12 h'J +• + 12H Ah -h- (3.22)

The energy release rate specifies the magnitude of the near-tip singularity
but does not specify the mode mixity. The information is completed by the
complex stress intensity factor K, which, to be consistent with linearity,

dimensionality and the Irwin-type relation (2.29), takes the form

I-aý 1/2 _

______-- ,, U ie"P M (3.23)

where i = I, and P and M are linear combinations of the edge loads:

P = P1 - C1 P3 - C2 M3 /h, M = MI - C 3M1. (3.24)

The geometric factors are given by

C , = -I + - A), C3  -, (3.25)

LA 

I ,2/ 
12 !
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FIG. 24. Calculated values of the function w(oa, fl, q), which appeared in Eq. (3.23).

and by

1rl( +1 6 12(1 + ) siny = 61q2 (l + ,7).

(3.26)
All these formulae are derived from the classical beam theory.

The angle uw is a function of the Dundurs' parameters a, # and relative
height q. This function was determined by solving the elasticity problem
numerically; the computed values are plotted in Fig. 24, and an extensive
tabulation can be found in Suo and Hutchinson (1990).

5. A Substrate Crack in a Bilayer

Depicted in Fig. 25 is an infinite bilayer with a semi-infinite crack parallel

to the interface. Each layer is isotropic and homogeneous. There are two
length ratios: ý, = H1 /h and ý =. H/h. The problem was solved by Suo and

Hutchinson (1989b) in the context of substrate spalling of a residual stressed
thin film. The details of the application can be found in Section V.C.2, and
here we will focus on the solution of the elasticity problem.

Of the three edges, one is a homogeneous beam and the other two are

composite beams. The positions of neutral axes for the two composite
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FIG. 25. A bilaver with a crack off the interface. Ihe neutral axes for the TIV\o composite

layers are indicated.

beams are given by

'-+y•+2 •+ 1ý,+ EA A, =1  (3.27)
2(ý + 1) 2(ý 1 + Y-)

The three beams may be described by a linear variation like (3.20). The
effective cross-section and moment of inertia of the two composite beams
are given by

A = + Y., I= Y[(A -)2_(A - )+ 1/3]

+ A+(A - ) + 3/
(3.28)

A =• + 1, 11 = E[(Al s) (A, - ý,) + 1/3]

+ Aý,(A1 -j) + '/3.

The energy release rate can be calculated in closed form:

M P + M _2 12MA 12 MM1
P' -- 1 (3.29)2E = hA, I hI+ h(ý - ý,) +3•_•) hA "h "

The stress intensity factors are

P M
K, = costO + sin(w + y),

2hU 2h3 V
(3.30)

P M
= sin ,-- cos(w + y),

K1 12hU2 \hV
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where P and M are linear combinations of edge loads:

P P, - Q P, - CA13,17, l . - ,

4A j (3.31)

and the geometric factors are
I[A X - j-- -• /2112 1

+ 12 1 1 + 12
1, J1 V 1)3

U • - , +1 -I' i (N - ,

sin ), A I + (, - 1)/2(
= -12 (~~3(3.32)N UV (ý - ý1)3

The angle u as a function of ca, /3, (, and , is extracted from a numerical

solution, and is tabulated in Suo and Hutchinson (1989b).

C. A BILAYER HELD BETWEEN RIGID GRIPS

Figure 26 shows a bilayer with thickness h and H constrained between
grips. Each layer is taken to be isotropic. The constraint is assumed to be

perfectly rigid so that no separation nor sliding take place between the
bilayer and grips. Both layers may be subject to residual stress in the layer
direction, but it will not affect the singular field, and will therefore be
ignored. An interface crack is driven by the relative translation, U and V,
of the two grips. The problem of a homogeneous layer with a crack running
on the mid-plane, i.e., h = H, has been solved analytically (Rice, 1968). A
gripped epoxy/glass bilayer has recently been used by Liechti and Chai

(1990b) to study mixed mode interfacial fracture resistance; see also Section
Il.C.4. The specimen calibration for a wide range of bimaterials are
described in the following.

The debonded layers far behind the crack tip are stress-free, while the

bonded layer far ahead is under a uniform strain state. An energetic
accounting shows that

G(= j3+ +- + , (3.33)

where f--- 2pu(l - v)/(l - 2v) for plane strain, and E 2p/(l - v) for
plane stress.
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FiG. 26. The insert shows a bilayer held between two rigid g-ips, and the crack is driven by
the relative translation of the two grips. The numerical solution of the angle cW in Eq. (3.34)
is plotted.

The mode mixity may be controlled by the relative proportion of the two
grip translations. More precisely, the interfacial stress intensity factor is
given by

K hicei (1 - )', /[ + 22 + ' (L + )1 ]. (3.34)

This is derived using (3.33) and the Irwin-type relation (2.29). All quantities
in the equation have been defined previously except for the angle w, which
is a function of P/i#2, V1, V2 , and h/H. The problem contains displacement
boundary conditions, so that in principle the two Dundurs' parameters are
insufficient to characterize the bimaterial. However, it has been confirmed
numerically (Beuth, 1991) that, once the Dundurs' parameters are fixed, the
solution is almost independent of the third free variable. Finite element cal-
culations are done for the case H = h and the results are plotted in Fig. 26.
Linear interpolation is recommended for values between = 0 and f e =/4.
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1). SM•P -SCAL1. l 1 , RLS

Scales play a fundamental role in the ,'.ievelopment of :he frac!'-ure
mechanics. as in any branch of continuum science. Classical examples are the
notions of small-scale yielding, honiogenization of composites or damage

response. Here. NNc try t- demonstrate, by a concrete example, hov inter-
face fracture mechanics may be applied at different scales. Consider two
blocks of substiates joined by a thin adhesive layer. One is asked to study
the toughness of the assembly. The problem may be tackled at two scales.

At a relatively macroscopic level, one may think of this as an interface
fracture process between the two substrates, treating the adhesive as a small

scale feature. At such a level, the two substrates explicitly enter the scheme
of interface fracture, but the role of the adhesive, a; well as damage
processes in it, is contained in the niacroscopically measured toughness.
This evaluation process has been used in the a.- ,,2sion community for years,
except that the two substrates are usually identical, so that only the mixed
mor,- fracture mechanics of homogeneous materials need be invoked.
Obviously interface fracture mechanics is ideally suited to study the
adhesion of different substrates.

At a more microscopic level, one may study the cracking along the
interface between the adhesive and one of the suhstrates. Interface fracture
mechanics can be used provided the crack stays along the interface and

other damage processes are confined in a crack tip core region that is small
compared with the thickness of the adhesive. These requirements can be
realized if the interface is brittle enough. Mathematically, some well-
defined small-scale features may be analyzed using a boundary layer
approach. A few examples related to multilayers are collected in this
section. Applications will be discussed in Section VIII.

1. A Sub-interface Crack

Consider a crack running near an interface (Fig. 27). The distance
between the interface and crack, h, is small compared to all other in-plane
lengths. The overall geometry, viewed at a scale much larger than h, can be
regarded as an interface crack, so that the actual load and geometry can be
represented by the complex stress intensity factor K appropriate for an
interface crack. Near the crack tip, the stress field is that of a mixed mode
crack in a homogeneous material, parameterized by K, and K1,. Hutchinson
et at. (1987) provided a connection between the two sets of the stress
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Fio. 27. A sub-interface crack. The spacing h is much smaller than the overall specimen
dimension. The remote and local stress intensity factors are connected by Eq. (3.36), and the
phase shift OH is plotted.

intensity factors, and used it to study the existence of mode I trajectory
paralleling the interface.

The local and global energy release rates are identical, namely
1 (K2 K?) 1,2.

G= (K + IKI)1 (3.35)

This relation gives the energy release rate at the crack tip, provided the
remote K is known. Observe that the magnitudes of the two sets of stress
intensity factors, K, + iKf1 and K, are directly related by (3.35). They can
differ only by a phase shift, designated as OH, so that

K1 + iKu1 = (+8 Kh'teH. (3.36)

The phase shift OH , ranging from - 15' to 5', is a function of the Dundurs'
parameters. The numerical solution is plotted in Fig. 27, and a more
extensive tabulation can be found in the original paper.

2. An Interfacial Crack in a Sandwich

Any homogeneous fracture specimen may be converted to measure
interface toughness by sandwiching a thin layer of second material. The
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FIG. 28. An interface crack in a sandwich. The remote and local stress intensity factors are
connected by Eq. (3.38), and the phase shift w is plotted.

generic set-up is depicted in Fig. 28. An interlayer of material 2 is embedded
in a homogeneous body of material 1, with a pre-existing crack lying along
one of the interfaces (upper interface here). Each material is taken to
be isotropic and linearly elastic. A solution described in the following,
obtained by Suo and Hutchinson (1989a), provides the basis for a variety of
sandwich specimens; an example, a Brazil-nut sandwich, will be discussed in
Section IV.C.

The problem is asymptotic in that the reference homogeneous specimen is
infinite and the crack is semi-infinite, as is appropriate when the layer
thickness h is very small compared with all other in-plane length scales. The
crack tip field of the homogeneous problem (without the layer) is prescribed
as the far field in the asymptotic problem. Thus, the far field is character-
ized by K, and KII, induced by the loads on the reference homogeneous
specimen. The interface crack tip field is characterized by the (complex)
interfacial stress intensity factor K. A relation is developed in what follows
that connects these two sets of stress intensity factors, allowing conversion
of any homogeneous specimen to a sandwich without further calibration.

The global and local energy release rates are the same:

G =l(K + •)=I f 2

G -(K?2+ K 2 ) IKI2. (3.37)
LE*
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Considerations similar to those of the previous subsection give

K = h(( 1 I(KI + iK1i)e'•'" (3.38)

From numerical calculations, the angle shift co, which is due exclusively to
the moduli dissimilarity, ranges between 50 to - 150, depending on a and fl.
The solution is plotted in Fig. 28; other cases are tabulated in Suo and
Hutchinson (1989a).

3. Parallel Debond

When a sandwich layer is under substantial residual compression, debond
may take place along the two interfaces. The phenomenon was observed in
preparing A120 3-SiC-AI 20 3 laminate (private communication with A. G.
Evans). The laminate was diffusion bonded at an elevated temperature, but
debonded into three layers in the cooi-down. Parallel cracks under uniaxial
loads have been observed in laminates with center notches or matrix cracks.
The solution obtained by Suo (1990b) is given in the following.

It can be shown with the Eshelby cut-and-paste technique that, as far as
the stress intensity is concerned, the residual compression is equivalent to a
mechanical load of layer pull-out. Depicted in Fig. 29 is a slightly general-
ized situation in which an opening load represented by K16 is included, in
addition to the pull-out stress a. It is envisioned that the pull-out stress itself

Fia. 29. Parallel debond of a sandwich layer, driven by the pull-out stress a and the remote
opening load K7.
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may not be high enough to trigger debonding, but the structure debonds
with an additional remote mode-I load.

To gain insight into this setup, we ignore the moduli difference in this
preliminary treatment. By an energetic argument, one obtains the energy
release rate at each tip under combined loads a and K':

G I + -h) (3.39)

Hence, the interfacial fracture energy can be inferred if one measures a and
the critical KO that trigger the debond.

Recall the Irwin formula (2.5) is applicable for each crack tip. Comparing
the two energy release-rare expressions, and keeping the linearity of thz
elasticity problem in mind, one obtains the local stress intensity factors

1KI 1I
K, = -K' cos4) + 2 a'vfsin 0,

(3.40)
1 .

K11 = - Kj" sin4) + crv'h cos 0.

The angle 4) has to be determined by solving the full elasticity problem. An
integral equation approach was used and the solution was found to be
4) f 17.50.

Consider the case when Kj* = 0. The above solution indicates that the
pull-out stress induces a significant amount of crack face opening, along
with the predominant sliding. By contrast, residual tension (equivalent to a
push-in mechanical stress) induces a negative K1 , suggesting that debonding
will be a pure mode-lI sliding against friction. Therefore, parallel debond-
ing will more likely take place for adhesives in residual compression than in
tension, provided other conditions are the the same.

The solution can be generalized to orthotropic materials using the
concept of orthotropy rescaling. Suppose the entire material is orthotropic
and homogeneous. Two cracks run in the principal axis 1. Using orthotropy
rescaling, (3.40) becomes

1 ** 3/8

K, = I Ki cos4) + ---•arV sin 4),

(3.41)1.-/4 2 /
K11 = --- 7FK sin 4) + 2-n ahcos 4),
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TABLE I

o(p) (IN DEGREES) FOR PARALLEL DEBOND

p -0.5 -0.3 -0.1 0,1 0.3 0.5 0.7 0,9
22.9 21.6 20.6 19.9 19.2 18.7 18.2 17.8

p 1 2 3 4 5 6 7 8
017.5 15.9 14.9 14.1 13.4 12.9 12.5 12.1

where n = [(I + p)/2]1"2 . Now the phase shift , depends on p. An integral
equation is solved numerically, and the results are listed in Table 1.

IV. Laminate Fracture Test

Interlaminar fracture resistance of multilayers is usually measured using
beam-type specimens. Fractuire mode mixity, ranging from opening, mixed
mode, to shearing, can be controlled by the loading configuration. A
catalog of such specimens is presented, for application to both orthotropic
materials and bimaterials. Most of these specimens have been used by the
composite community for decades. Yet rigorous, general calibrations are
available only recently. Delamination resistance can be enhanced by a
variety of bridging mechanisms. A prevailing issue is that the bridging-zone
size is usually several times the lamina thickness, so that delamination resist-
ance is no longer a material property independent of specimen size and
geometry. The implications will be studied using the Dugdale model.

A. DELAMINATION BEAMs

Beam-type fracture specimens are most frequently used for composites,
adhesive joints, and other laminated materials. Small scale features such as
fiber/matrix inhomogeneity are typically not explicitly taken into account.
For example, homogenized elastic constants are used for composites. The
Irwin-Kies compliance calibration is still in use for lack of elasticity solu-
tions. Empirical calibrations obtained this way should be valid only for the
materials being tested, since they typically depend on elastic constants.
Finite element calibration has been used by many authors, and previous
literature on the subject may be found in a volume edited by Friedrich (1989).
Guided by an orthotropy rescaling concept, Suo (1990c) and Bao et al. (1990)
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have analyzed many commonly used specimens, using either integral
equations or finite elements. Included were notched bars loaded in various
configurations, delamination beams, and hybrid sandwiches. The work of
Suo (1990c) has been summarized in Section III.B.2, which is applicable
for unidirectional composites under steady-state loading configurations,
Several other delamination beams analyzed by Bao et al. (1990) will be
described in the following.

1. Double Cantiler Beams

Illustrated in 1-g. 30 is a double cantilever beam made of a unidirectional
composite with fibers along the beam axis. The specimen is pure mode 1,
and energy release rate is

G = 12h (1 + Y)-/ 4 h/a)2 , (4.1)

where P is force per unit width, 2h beam thickness, a crack length,
EL = 1/b,1 is the effective Young's modulus in fiber direction, and A and p
are dimensionless orthotropic parameters. These material constants are
defined in Section II.B. The dimensionless factor Y is approximated by

Y(p) = 0.677 + 0.149(p - 1) - 0.013(p - 1)2. (4.2)

These formulae are valid for both plane stress and plane strain, for generally
orthotropic materials within the entire practical range, A114a/h > 1 and
0 < p < 5, and the error is within 1%. In particular, the preceding result is
valid for isotropic materials when p = A = 1.

This calibration is obtained using finite elements, together with several
analytic considerations. The first term in the bracket in (4.1) reproduces the
exact elasticity asymptote as a/h -+ c, which may be obtained from the

t P

6-a 
{1 h 2

Yr I

FiG. 30. A mode I delamination specimen (double cantilever beam (DCB)).
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p

a" I

End-Loaded-S p!'At (ELS)

2P

"crack

2L
P P

End-Notched-Flexure (ENF)

Fto. 31. Two mode II delamination beams: (a) end-loaded split (ELS); (b) end-notched
flexure (ENF).

classical beam theory. The second term in the bracket is the first order
correction in h/a. /-.. a consequence of the orthotropy rescaling, the
consistent correction, including the elastic constants A and p, is of the form
(4.1), where Y depends on p only; see Suo et al. (1990b).

2. End-Loaded Split and End-Notched Flexure

Figure 31 shows two designs of mode II specimens. The calibration for
ELS is

9(Pa)2

G = 4--EL (I + YA-1/ 4h/a)2 , (4.3)

Y(p) =0.206 + 0.078(p - 1) - 0.008(p - 1)2. (4.4)

All comments in the last subsection are valid here. To a high accuracy, the
calibration for ENF is identical to the preceding, as independently confirmed
by He and Evans (1990b).

3. Steady-State Mixed Mode Specimens

It is relatively difficult to design a mixed mode fracture specimen having
a fixed mode mixity as the crack grows. Two such specimens are depicted in
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Fig. 20. As the crack length exceeds about three times the notch depth h,
both the driving force and mode mixity become essentially independent of
the delamination length. The calibrations are listed in the figure. It is not

necessary to measure crack size in a fracture test with such steady-state
specimens. Steady-state delamination beams of other edge load combina-
tions and/or of dissimilar arm thicknesses can be specialized from the
general solution in Section III.B.2.

4. Other Mixed Mode Delamination Beams

Recall that stress intensity factors are linearly additive. One may use the
basic solutions presented in the preceding to obtain calibrations for other
specimens. Two examples are illustrated in Figs. 32 and 33. The specimen in
Fig. 32a is mixed mode, and can be solved by a superposition of DCB and
ELS. Note that both the magnitude of G and the mode mixity change as the
crack advances. The three-point bend in Fig. 33 is a superposition of the

four-point flexure specimen and the specimen in Fig. 32a.

/1/ Mixed Mode

II
P2

DCB

+

P/2

3 tELS

P/2

FIG. 32. The rnixed mode end-notched split is the superposition of the DCB and ELS.
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Three-Point Bend

M M=PLFour-Point Bend

(see Fig. 20c)

P/2

M(ýl (so. Fig. 329)

FiG. 33. A superposition scheme for three-point shear.

B. INTERFACIAL FRACTURE SPECIMENS

As discussed in Section II.C, the fracture resistance of an interface
generally depends on the mode mixity. Thus, a toughness curve, F(0,), must
be determined experimentally to fully characterize a given interface. Two
strategies have been used in practice to vary the mode mixity: multiloads or
multispecimens. The bilayer held between rigid grips discussed in Section
IiI.C.4 ani Section II.C is an example of multiload specimens. In this
section, several other specimens are described.

1. Four-Point Flexure of a Bilayer

Figure 34 shows a specimen consisting of roughly the seirn m,',nt of
opening and sliding. The specimen was first analyzed by Charalambides et
al. (1989), and is a special edge load combination of the general problem in
Section III.B.4. Evans and coworkers at the University of California, Santa
Barbara have used this configuration to test bimaterial interfaces (Cao and
Evans, 1989), ceramic composite laminates (Sbaizero et al., 1990), metallic
adhesive joints (Reimanis and Evans, 1990), and thin films (Hu and Evans,



Mixed Mode Cracking in Layered Materials 117

65 P P

60

z55

45

40 02

.4
35 

-6
30

,1 .2 .3 .4 .5 .6 .7 .8 19

h/H
FIG. 34. The insert shows the UCSB four-point flexure of a bilayer. The mode mixity is

plotted.

1989). The setups have been collectively referred to as the UCSB four-point
flexure specimens.

When the crack exceeds a few times the thickness of the notched layer, h,
it can be considered as semi-infinite. The energy release rate is obtained in
closed form:

G = m 2 ( 3 (4.5)

where M = P1 is the moment per unit width, and the dimensionless moment
of inertia I is given in (3.21). The loading phase y is defined by (2.45) with
h as the reference length, such that the stress intensity factor is

K IKIh-" exp(iy,). (4.6)

It is plotted in Fig. 34 with 8 = 0.
Charalambides et al. (1990) carried out a thorough analysis of several com-

plexities of the four-point flexure. One complication concerns the k'sidual
strmss in bilayers induced in fabrication, which would affect both energy
release rate and loading phase. Observe that the complex stress intensity
factors due to the bending moment and residual stress can be linearly
superimposed, and both are the special cases of the general problem in
Section III.B.4. The latter case will also be treated explicitly in Section V.D.

2. Edge-Notched Bend

A predominantly opening specimen is depicted in Fig. 35. Without loss of
generality, one can choose material I to be relatively rigid, so that the
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FiG. 35. Calibration of the edge-notched bend of a bimaterial bar.

Dundurs parameter satisfies ot > 0. With y defined by (2.45) with I = a, the
stress intensity factor is calibrated by

K = YTv7a-I e'. (4.7)

Here, T is the nominal bending stress, related to the moment per unit width
M by

T = 6M/W 2, (4.8)

and Y is the real, positive calibration factor.
Both Y and y/ are dimensionless functions of a, /8, and a! W. The finite

element results are plotted in Fig. 35 (O'Dowd et al., 1990). Observe that
the magnitude factor Y is nearly independent of elastic mismatch. The
loading phase V varies between 00 to 10°, depending on the elastic
mismatch.
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3. Edge-Notched Shear

Calibration is also available for the specimen shown in Fig. 36 (O'Dowd
et al., 1990). The loading phase is controlled by the offset s! H. The stress
intensity factor is

K = YTxaa- e"', (4.9)

where y/ is again defined by (2.45) with I = a, and

(A -B)P
T = B)W (4.10)(A + B) K'W

The dimensionless functions Y and v are plotted in Fig. 36.
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C. BRAZIL-NUT SANDWICHES

Any homogeneous specimen can be converted to an interfacial specimen
by sandwiching a thin layer of a second material between split halves of the
specimen. The general setup is analyzed in Section lIl.D.2. As an example,
here we sandwich the Brazil nut with a layer of second material, and a crack
is left on one of the interfaces (Fig. 37). The specimen has been developed
to determine interfacial toughness by Wang and Suo (1990).

A remarkable feature common to all thin-layer sandwiches is that the
residual stress in the layer does not drive the crack, because the strain energy
stored in the layer due to residual stress is not released in the process of
cracking. Thus, one does not have to measure the residual stress to deter-
mine toughness. On the other hand, as discussed in Section VIII, excessive

1,2-
11 (•-0 6
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FIG. 37. Driving force and mode mixity of the Brazil-nut sandwich.
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residual stress may cause complications such as crack tunneling and

kinking, so it should be avoided.

1. Homogeneous Brazil Nuts

A homogeneous Brazil nut is a disk of radius a, with a center crack of
length 21 (as illustrated in Fig. 37 but without the interlayer), which has
been used for mixed mode testing of brittle solids for years. The loading
phase is controlled by the compression angle 0: It is mode I when 0 = 0',
and mode II when 0 250. The stress intensity factors are

K, = f 1 Pa-1/2, K 1 =-f 1 Pa 1 /2, (4.11)

where the plus sign is for tip A, and minus for B. The nondimensional

calibration factors f, and fl, are functions of 0 and I/a, and available in
fitting polynomial forms in Atkinson et al. (1982).

Using the Irwin relation (2.5), the energy release rate is

G = (f 2 + fi)P2/aEs, (4.12)

where Es is plane strain tensile modulus for the substrate. The loading
phases at tips A and B are

tan-I(KnI/Ki) = ±tan-'(fn1 /f1 ), (4.13)

respectively. Equations (4.12) and (4.13) are plotted in Fig. 37.

2. Sandwiched Brazil Nuts

A sandwich is made by bonding two halves with a thin layer of a second
material. Nonsticking mask is supplied on the prospective crack surface
prior to bonding. When the layer thickness h is much smaller than other
in-plane macroscopic lengths, the energy release rate can still be calculated
from (4.12). This is true because of the conservation of the J-integral, and
becaus,-, the perturbation due to the thin layer is vanishingly small in the far
field.

The mode miirity 0,, defined by (2.45) with i as the reference length, is
shifted from that for the homogeneous specimen, in accordance with

#P = ±tan-'(f1 /f1 ) + vw + e ln(//h). (4.14)

Here, wo, plotted in Fig. 28, is the shift due to elastic mismatch (3.38), and
the last term is the shift due to the oscillation index c, (2.49).
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D. DELAMINATION R-CURVES

1. Large-Scale Bridging

Over the last decade, it has become increasingly evident that the
toughness of brittle materials can be enhanced by a variety of bridging
mechanisms. The mechanics language that describes this is resistance curve
behavior (R-curves): Toughness increases as crack grows. Attention here is
focussed on the delamination of unidirectional or laminated composites,
where cracks nominally propagate in planes parallel to fibers. A comparative
literature study shows that for both polymer and ceramic matrix com-
p-sites, bridging is usually due to intact fibers left behind the crack front,
while the crack switches from one fiber-matrix interface to another as it
propagates. Additional resistance for polymer matrix composites comes
from damage in the form of voids, craze, or micro-cracks. Three-
dimensional architecture of threading fibers may also give rise to substantial
fracture resistance.

As the prerequisite for these bridging mechanisms, significant damage
must accumulate ahead of the pre-cut tip as an additional energy dissipater.
In laminates, for example, the length over which fibers bridge the crack is
typically several times lamina thickness. The significance of an R-curve as
a material property becomes ambiguous, since the R-curve now depends on
specimen size and geometry. The intent of this section is to describe several
generic features unique to delamination R-curves, as identified in Suo et al.
(1990a); references on the subject can be found in the original paper.

2. Essential Features of Delamination R-curves

Consider a beam with a pre-cut, loaded at the edges by moments (Fig. 38).
The damage zone size L can be comparable to or larger than beam thickness
h, but the beam and pre-cut are much longer, so that the geometry is fully

M

(2h

FiG. 38. A mode I delamination beam, with a damage zone as an additional energy
dissipater. The geometry is specified by L/h.
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FiG. 39. Two generic features of delamination R-curves. The plateau G,, is independent of
the beam thickness h. The steady-state damage zone L,, size increases with h.

characterized by the ratio Lih. The material is assumed to be elastically
isotropic and homogeneous, and plane strain conditions prevail. The
nominal, or global, energy release rate is defined as the J-integral over the
external boundary as given by Rice (1968):

G = CM2 , C = 12(1 - v2)/Eh3 . (4.15)

Here, M is the applied moment per unit width, C the beam compliance, 2h
the thickness, E the Young's modulus, and v the Poisson's ratio. The
specimen has a steady-state calibration: The global energy release rate does
not depend on crack size, nor does it depend on any information of the
damage zone (size, constitutive law, etc.).

Phenomenological delamination R-curve behaviors are shown schemati-
cally in Fig. 39. First, focus on a R-curve measured using a beam of a given
thickness, say, h, in the figure. The specimen can sustain the increasing
moment, without appreciable damage at the pre-cut front, up to a critical
point corresponding to Go. Subsequently, the damage zone size L increases
with the applied moment, leading to an increasing curve of resistance GR.
The damage zone may attain a steady-state: It maintains a self-similar
opening profile and a constant length L,,, translating in the beam, leaving
behind the crack faces free of traction. Correspondingly, a plateau G,,
would appear on the R-curve.

To proceed further, the Dugdale (1960) model is invoked, which, in its
generalized form, simulates the homogenized damage reponse with an array
of continuously distributed, nonlinear springs. Specifically, at each point in
the damage strip, the closure traction a depends locally on the separation 6
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according to
a = a(65). (4.16)

The functional form is related to the nature of damage, but is assumed to
be identical for every point in the damage strip, and independent of the
specimen geometry. A maximum separation 60o is specified, beyond which
the closure traction vanishes. The spring laws may be measured or modeled
using simplified systems. They may also be inferred from experimental
R-curves, as will be discussed.

For an arbitrary spring law, the following energy balance is due to the
J-integral conservation (Rice, 1968):

G = Go + Lr(b)d6, (4.17)

where J, referred to as the end-opening of the damage zone, is the separa-
tion at the pre-cut tip. Here and later, we will not distinguish the driving
force G and the resistance GR, as they can be judged from the context. The
two energy release rates G and Go will be referred to as global and local,
respectively. The global energy release rate represents the supplied energy,
which is related to the applied moment via (4.15); the local one is the energy
dissipated at the damage front. The difference given by (4.17) is the energy
to create the damage.

The steady-state resistance G,, is attained when the end-opening reaches
the critical separation, J = 60. Thus, from (4.17), G,, equals the sum of Go
and the area under the spring law. The physical significance is that the
plateau G, does not depend on the beam thickness, and is therefore a
property for a given composite laminate. However, it is not yet clear how
long the damage strip will be before the steady state is attained. The steady-
state damage-zone size L, indicates the "quality" of a bridging mechanism:
Toughness gained from too long a damage zone may not be useful in
practice. Qualitatively, a thicker, stiffer, beam is more constrained for
deflection, and thus exhibits larger L,1 . These essential features of the
delamination R-curves are indicated in Fig. 39.

Equation (4.17) suggests a way to determine the damage response. By
continuously measuring the end-opening J, and by using the experimentally
determined R-curve, the spring law can be inferred by differentiating (4.17):

,a(S) = aG8 /•0 . (4.18)

The intrinsic resistance Go is assumed to be independent of the damage
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accumulation. This simple method, which bypasses the complexities of
large-scale bridging, is one of the advantages of specimens with steady-state
calibrations. Large-scale bridging may be used as an experimental probe to
study localized (planar) damage response such as polymer craze and inter-
face separation, as uniform separation over a sample may be difficult to
accomplish in reality because of the instabilities triggered by inhomogeneities
or edge effects.

3. Rigid Plastic Damage Response

To gain some quantitative feel, consider a two-parameter damage
response: The closure traction is ao when 6 < 60, and vanishes when
6 > 6.. The steady-state toughness is

G= Go + a0 6o0 . (4.19)

The end-opening and crack tip stress intensity factor are given by

= aL2 ',CG _ a L 4Co, (4.20a)
4

2~o+- qLoo, (4.20b)

where the dimensionless number a depends on L/h only, and the finite
element results are listed in Table 2.

The R-curve defined by Eq. (4.20b) is plotted on Fig. 40 in a dimension-
less form. The plateau G,, in (4.19) should be a horizontal line independent
of h and L (not shown in the figure). From material characterization point
of view, an inverse problem is of much more interest: how to infer the
model parameters from a given experimental R-curve. The quantities GO,
G.S, and L,, can usually be read off from the R-curve. Using these, the
model parameters Oo and 65o can be inferred from (4.20).

A family of damage responses including softening and hardening have
been analyzed in Suo et al. (1990a). The effect of mode mixity has also been
discussed. A parallel experimental investigation has been carried out by

TABLE 2

a(L/h)

L/h 0.5 1.0 1.5 2.0 3.0 3.5 4.0 10.0
a 4.89 2.60 2.01 1.74 1.58 1.48 1.35 1.14 1.00
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FIG. 40. Dimensionless R-curves predicted using the rigid plastic damage response
(mode I).

Spearing and Evans (1990) with a unidirectional ceramic composite. The
experimental data and the model show very similar behavior, suggesting that
the model incorporates the controlling features of the toughening mechanism.

V. Cracking of Pre-tensioned Films

Thin films of metals, ceramics and polymers, are typically subject to
appreciable residual stress, which for ceramic systems can be on the order
of a giga-pascal. Such stress can cause cracking of the films. Films under
residual tension and compression will be considered in this and the next
sections, respectively. In this section, commonly observed fracture patterns
in pre-tensioned films are first reviewed, together with a discussion of the
governing parameters. These crack patterns are then analyzed in subsequent
subsections, with cracking in films, substrates, and along interfaces treated
independently. The values of a nondimensional driving force Z will be
documented to assist the practitioners of the field. The last subsection
presents a speculative analysis of thermal shock spalling.
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FiG. 41. A pre-tensioned film is deposited on a substrate.

A. CONTROLLING QUANTITIES AND FAinURE MODES

Illustrated in Fig. 41 is a film of thickness h on a substrate. Both materials
are taken to be isotropic and linearly elastic, with elastic moduli and
thermal expansion coefficients (El, vf, cif) and (E5, vs, oa), respectively.
Elasticity mismatch may be characterized by the two Dundurs parameters a
and 8 defined in (2.21); a > 0 when film is stiffer than substrate. A crack
will grow as the driving force G attains the fracture resistances If, 17, ri,
depending on whether the crack is propagating in the film, substrate, or
along the interface. The mode I fracture resistance is usually appropriate
for films and substrates, but mixed mode resistance must be used for
interfaces.

1. Driving Force Number and Critical Film Thickness

To help visualize the cracking progression, the residual stress is assumed
to be due entirely to thermal mismatch. However, with proper interpreta-
tion, most of our results would be valid for stress due to other sources. The
film-substrate is stress-free at a high temperature To. Upon cooling to the
room temperature T, the contraction strains in the film and substrate, were
they unbonded, would differ by (af - %q)(To - T,). A biaxial misfit stress is
defined accordingly:

a = (af - ca)(To - T,)Ef/(I - vf). (5.1)

Notice a > 0 when af > %,. This stress is large: Typically, E: 1_ I MPa/K
for most materials. For example, the stress would be of order I GPa if the
temperature drops 1000 K (this is common in processing ceramic systems).
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Flo. 42. An Eshelby-type superposition to treat a residually stressed film decohering from
a substrate.

The thermal stress field can be evaluated by an Eshelby-type superposition.
As an example, consider a thin film decohering from a substrate, driven by
a biaxial misfit strain (Fig. 42). Problem (a) is trivial: the misfit strain is
negated by a mechanical strain corresponding to the tensile stress a; the film
is under a uniform biaxial stress, and the substrate is stress-free. In problem
(b), a pressure of magnitude a is applied on the edge of the film, but no
misfit strain is present. The superposition recovers the original problem,
with misfit strain but without edge load. Since no stress singularity is
present in (a), the crack driving force is entirely due to (b). The latter is a
standard elasticity problem, which requires numerical analysis.

A unifying dimensionless number Z is defined such that the energy release
rate for a crack is

G = Za2hh/-f. (5.2)

Note that the elastic strain energy stored in a unit area of the film is
(I _ Vf)a 2h/Ef. The number Z is a dimensionless driving force, or order
unity, depending on the cracking pattern and elastic mismatch. The prac-
tical significance of this dimensionless number was first documented by
Evans et al. (1988). Common cracking patterns are sketched in Fig. 43,
together with their Z-values, where the film-substrate system is taken to be
elastically homogeneous, and the substrate semi-infinite.

Equation (5.2) provides a design limit. Given the mechanical properties
and misfit stress, a specific cracking pattern is inhibited if the film is thinner
than a critical thickness, given by

hc = FEf/Za, (5.3)

where r is the relevant fracture resistance. The following example illustrates
a routine application using the information gathered in this section.
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Cracking Patterns G = Z "2 h/Ef

Surface Crack

Z = 3.951

Channeling

Z = 1.976

_ Substrate Damage

Z = 3.951

Spalling

Z = 0.343

Debond

Z= 1.028 (initiation){ 0.5 (steady - state)

Fir. 43. Commonly observed cracking patterns. The dimensionless driving force for each
pattern is listed, assuming that the film-substrate is elastically homogeneous, and the substrate
is infinitely thick.
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Consider channeling cracks in a glass film coated on a thick SiO, substrate.
Suppose Ef = 7 j/m2, Ef = 70 GPa, a = 50 MPa. One reads from Fig. 43
that Z = 1.976, which is appropriate since glass and SiO, have similar elastic
moduli. The critical film thickness computed from (5.3) is hc :- 100pm.
The channel network is not anticipated if the film is thinner than 100pm.

2. Cracking Patterns

Let us go through Fig. 43 to define the various cracking modes. A surface
crack is nucleated from a flaw, and arrested by the interface. Yet the stress
is not high enough for the crack to channel through the film. Since flaws are
necessarily isolated, one would see stabilized, unconnected slits. The driving
force available for surface cracks is high, as indicated by the large value of
Z. Isolated cracks are detrimental for some applications, such as corrosion
protection coatings, but tolerable for others.

The channeling process is unstable: Once activated, it would never arrest
until it encounters another channel or an edge. Consequently, a connected
channel network would emerge, surrounding islands of the intact film. Such
cracking may not be acceptable for most applications, but, for example, is
common in glaze on fine pottery, and in pavement of roads.

Cracks in a film can propagate further to cause substrate damage. This
Z-value is the largest on the list. Such a crack may be stabilized at a certain
depth, since the misfit stress is localized in the film. However, the crack may
divert to run parallel to the interface, leading to the next cracking pattern.

Substrate spalling is an intriguing phenomenon: The crack selects a path
at a certain depth parallel to the interface, governed by K11 = 0. This is not
a localized failure pattern in that extensive flakes can be spalled off.
Fortunately, the Z-value for spalling is quite low. If a small amount of
substrate damage is acceptable, one gains substantial flexibility in design.

Debonding may initiate from edge defects or channel bottoms. The latter
can be stable: The driving force for initiation is higher than that for the long
debond. This fact is exploited to introduce pre-cracks for certain types of
fracture specimens, such a& the UCSB four-point flexure specimen.

In the following sections, these failure modes will be examined in some
detail. Emphasis is placed on the relevant elasticity problems that lead to
estimates of the driving force number Z. Experimental efforts will be cited
in passing. The writers hope this catalog will be used critically by experi-
mentalists in various disciplines, thereby allowing the catalog to be
validated or modified.
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B. CRACKING IN FIMS

Imagine a process with increasing tensile stress in the film, for example,
the cooling process. As illustrated in Fig. 43, a surface flaw is activated by
the tensile stress, grows towards the interface, and then arrests if the
substrate and interface are tough. With further stress increase, the crack
may channel through the film. The two stages will be treated separately in
the following.

1. Surface Cracks

We model the situation by a plane strain crack; see the insert in Fig. 45.
This is appropriate for an initial surface flaw of length several times h, but
may not be valid for an equiaxial flaw. The latter is studied by He and
Evans (1990a) but is omitted here. The plane strain problem has been solved
by Gecit (1979) and Beuth (1990). The following paragraph is a digression
to a few mathematical considerations that capture the main features of the
solution, and which may be skipped without discontinuity in the content.

The dimensionless stress intensity factor K/a vhi depends only on the
relative crack depth a/h and Dundurs' parameters a and ,P. For small a/h,
regardless of the elastic mismatch, the stress intensity factor merges to that
of an edge crack in a semi-infinite space, i.e., K -- 1. 1215 V7 a as a/h -- 0.
Asymptotic behavior for another limiting case, a/h -- 1, can be obtained by
invoking the Zak-Williams singularity: the stress singularity for a crack per-
pendicular to, and with the tip on, the interface. Instead of the square root
singularity, the stresses near such a crack tip behave like ao - Rr-fi(O),
where (r, 6) is the polar coordinate centered at the tip, and thefu are dimen-
sionless angular distributions. The scaling factor R plays a part analogous
to the regular stress intensity factor, but having different dimensions:
[stress] [length]5 . The singularity exponent s (0 < s < 1) depends on elastic
mismatch, and is the root to

cos(snr) - 2 (1 - s)2 + o2 = 0. (5.4)

The numerical solution of s is plotted in Fig. 44. For a crack that penetrates
the film, I? - ah', with the pre-factor dependent on a and fl only. As
a/h - I but with the crack tip still within the film, the stress field away
from the small ligament (h - a) would not feel such a detail, and behaves
as if the crack tip were just on the interface, governed by k. Dimensional
considerations require the stress intensity factor K to be related to the far
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Fico. 44. (a) Zak-Williams singularity. (b) A curve fitting parameter.
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FIG. 45. Driving force available for an edge crack at various depths a/h.

field /k according to K - k(h - a)'1 2-. Combination of the preceding
gives K/a-hfi - (1 - a/h)112-' as a - h.

Motivated by these considerations, Beuth fitted his numerical solution
with

K/crvr = 1.1215v"i(a/h)" 2(l - a/h)l/2 -(l + ).a/h), (5.5)

where A. is taken to be independent of a/h, and is chosen such that the
formula agrees with the full numerical solution at a/h = 0.08; the results
are plotted in Fig. 44b. The error of (5.5) is within a fev, percent for
intermediate a/h. Equation (5.5) is plotted in Fig. 45 in terms of the dimen-
sionless energy release rate. The energy reiease rate starts from zero for
shallow flaws. As the crack approaches the interface, it drops to zero for
relatively compliant films (a < 0), but diverges to infinity for stiffer films
(a > 0).

One needs a priori knowledge of flaw size to predict a failure stress or the
maximum tolerable film thickness. In practice, a plausible flaw depth may
be assumed according to the "quality" of the film. Taking, say, a/h = 0.8,
one can obtain the nondimensional driving force Z from Fig. 45 for a
known elastic mismatch. The flaws will not be activated if the dimensionless
fracture resistance satisfies FfEt/cr2h > Z.
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Observe that for relatively compliant films, the driving force attains a

maximum at an intermediate depth. The practical significance is that no
flaws, regardless of initial depth, can be activated, provided the dimen-
sionless resistance FffEfa 2h is greater than the maximum. Such a
maximum, depending on the elastic mismatch a and fl, provides a fail-safe
bound for relatively compliant films.

2. Cracks Channeling through a Film

Figure 46 shows a crack channeling through the film. Complications such
as substrate penetration, interface debond, and channel interaction are
assumed not to occur for the time being. At each instant of the growth, the
i.hannel front self-adjusts to a curved shape, such that energy release rate at
every point on the front is the same. The elasticity problem is three-
dimensional in nature, and an accurate solution would require iteration of
the front shape. After the length exceeds a few times the film thickness, the
channel asymptotically approaches a steady-state: the entire front maintains
its shape as it advances; so does 6(z), the cross-section profile in the wake,
which attains the shape of a plane strain through-crack. The steady-state
cracking is analogous to that discussed in Section III.A. 1.

20

2h h

0 
W

-1 -8 -.0 - 4 .2 0 2 4 8

Fro. 46. The insert shows a crack channeling across the film, driven by the tensile stress in

the film. The available energy at the channel front is plotted for various elastic mismatch.
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In the steady state, the energy release rate at the channel front can be
evaluated using two plane problems-that is, by subtracting the strain
energy stored in a unit slice far behind of the front, from that far ahead.
The calculation does not require the knowledge of the front shape.
Alternative formulae have been developed with this idea. One is

G&s 2"h 5(z)a(z) dz. (5.6)

Two plane problems are involved: the stress distribution on the prospective
crark plane before cracking, 6(z), which, for the present situation, equals
, .,niform misfit stress a, and the displacement profile for a plane strain
crack, 6(z). This is particularly convenient for numerical computation.

A second formula is

Gs 5 = DG(a) da, (5.7)

where G(a) is the energy release rate of a plane strain crack of depth a in
Fig. 45. A mathematical interpretation is that G,, is the average of energy
release rates for through-cracks at various depths. Both formulae are valid
for films and substrates with dissimilar elastic moduli.

As an example, suppose the film-substrate is elastically homogeneous,
and the substrate occupies a semi-infinite space. The corresponding plane
strain problem is an edge crack in a half plane, with energy release rate
G(a) = 3.952a 2a/Ef (Tada et aL, 1985). The integral (5.7) gives G, =

1.976a22h/E. This pre-factor is listed in Fig. 43.
Beuth (1990) carried out an analysis of a thin film on a semi-infinite

substrate with dissimilar elastic moduli. The result is reproduced in Fig. 46.
If the dimensionless toughness rFEf/a 2h is below the curve, a channel
network is expected. Observe that a compliant substrate (a > 0) provides
less constraint, inducing higher driving force for channeling.

The channeling cracks were studied analytically by Gille (1985) using the
numerical solutions available at that time, and subsequently by Hu and Evans
(1988) with a combination of calculations and experiments. The concept has
been extended as a fail-safe bound for cracking in multilayers (Suo, 1990b; Ho
and Suo, 1990; Ye and Suo, 1990; Beuth, 1990). Applications include thin
films, reaction product layers, adhesive joints, and hybrid laminates.

3. Multiple Channeling

The preceding technique can be extended to study interaction among
channels. Suppose the biaxial stress is biased so that parallel channels
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FIo. 47. Interaction of multiple channels.

develop in one direction; see the inserts in Fig. 47. For simplicity, attention
is restricted to an elastically homogeneous system with a semi-infinite
substrate.

Consider a periodic set of edge cracks of depth a, spacing L, and subject
to an opening stress o. The energy release rate at each crack tip, G(a), is
found in Tada et al. (1985) in a graphic form, which is then fitted by a
polynomial. Based on this information, energetic accounting gives the
driving force for cracks channeling in the film.

The strain energy, per crack, gained in creating a set of cracks of depth h is

U = G(a) da = fah 2/1E, (5.8)

where the dimensionless factor f depends on the crack density h/L. The
results obtained by a numerical integration are plotted in Fig. 47. If these
cracks are equally extended in the channeling direction, the energy release
rate at each front is G,, = U/h = fo 2h/E. Thus, f is the dimensionless
driving force for this situation. Thouless (1990a) has employed this solution
in his discussion of crack spacing in thin films.

Next, consider the situation in Fig. 47 where, at a certain stage of loading,
the cracks of spacing 2L have already channeled across the film, and the
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tensile stress in the film has therefore been partially relieved. With further
increase of the loading, a new set of cracks are nucleated and grow half-way
between the existing channels. The energy release rate at the front of the
growing cracks should be computed from

Gýý = (2 UL - U2L)ih = [2f(h/L) - f(h/2L)]a 2 h/E'. (5.9)

This is derived from the strain energy difference far behind and far ahead
of the channeling fronts.

The result is also plotted in Fig. 47. Given the mechanical properties and
with the identification G,, = Ef, the plot may be viewed as a relation
between the stress level and the channel density. Notice we have assumed
that new cracks can always be readily nucleated half-way between existing
channels. This might overestimate the crack density for a given stress level.
An analysis with aspects similar to the preceding has also been carried out
independently by Delannay and Warren (1991).

C. SUBSTRATE CRACKING

Substrate damage may originate from edges or existing channel cracks in
the film. The two substrate cracking patterns in Fig. 43 are studied in this
section. Observe that the Z-values for the two patterns differ by an order of
magnitude.

1. Substrate Damage Caused by Cracks in Films

Suppose the channel cracks in the film have developed at some stage
during the cooling but have not yet grown into the substrate, either because
the substrate is much tougher or because sufficiently large substrate surface
defects are not readily available. The issue is whether these cracks would
propagate into the substrate upon further cooling. The problem has been
studied by Ye and Suo (1990), and the main results are summarized here.

The driving force for a plane strain crack into a substrate was analyzed
using finite elements, and the results are plotted in Fig. 48. Observe that the
driving force decays for deep cracks, implying stable propagation. For
relative compliant films (a < 0), the driving force starts from zero at the
interface, and attains a maximum at very small depths. It is difficult for
finite elements to resolve these details, so the trend is sketched by dashed
lines.
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FIG. 48. Energy release rate for a plane strain crack with the tip in the substrate.

The plane strain model is not quite correct, since cracks must be re-
nucleated, in a three-dimensional fashion, from a surface flaw on substrate.
The insert of Fig. 49 shows a crack growing laterally under an existing
channel in the film. The crack arrests at a certain depth because of the decay
of the available driving force. The energy release rate at the growing front
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FiG. 49. Energy release rate for a crack propagating under a channel in the film.
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may be computed from

Gss G(a') da'. (5.10)

Again, this is derived from energy accounting. The integral is evaluated
using the preceding plane strain results, and the results are summarized in
Fig. 49. The plot may be used as a damage tolerance map: Given a damage
tolerance a/h, one can read the design number Z. Take the curve for
a/h = 1.2 as an example. Provided the dimensionless substrate toughness
rEf/ ha is above the curve, no channel with depth a/h > 1.2 is antici-
pated. This holds true even if the initial flaws are deeper than 1.2, as long
as they are not channels themselves. Observe that the elastic mismatch plays
a significant role. A relatively compliant substrate would provide less
constraint, leading to larger driving force.

The so-called T-stress in (2.1) has also been computed by Ye and Suo and
is found to be positive, unless the film is much stiffer than the substrate and
the crack depth is small. As shown by Cotterell and Rice (1980), a positive
T-stress results in a tendency for a straight mode I crack to veer off to one
side or the other. Further discussion of crack path stability in a related
context is given in Section VIII.C. Here, we simply note that the substrate
crack will have a strong tendency to branch into a path parallel to the
interface, a cracking pattern to be discussed next.

2. Spalting of Substrates

Cracks, originating from either defects in the film or at the edge, have a
strong tendency to divert into the substrate, should the latter be brittle, and
follow a trajectory parallel to the interface; see Fig. 43. The key insight was
provided by Thouless et al. (1987) in a coordinated experimental and
theoretical investigation. Their initial intent was to model the impact of ice
sheets on offshore structures. The experiments were conducted with PMMA
and glass plates, loaded on the edges. Spalling cracks were found to follow
a trajectory parallel to the surface, with depth governed by the criterion
KnI = 0. (See also Thouless and Evans, 1990.)

These authors remarked to the effect that this mechanism would operate
in the edge spalling of pre-tensioned films, previously observed by Cannon
et aL (1986). As schematically shown in Fig. 43, the crack initiates at the
edge, extends along the interface for typically about two times film
thickness, then kinks into the substrate, and finally runs parallel to the
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interface at a depth of a few times the film thickness. In this case, the under-
lying mechanics is the same for giant ice sheets as for micro-electronic films.

Thorough investigations on pre-tensioned films have been conducted,
experimentally and analytically, by Hu et al. (1988), Hu and Evans (1988),
Drory et al. (1989), Suo and Hutchinson (1989b), and Chiao and Clarke
(1990). Focus here is on the steady-state spalling, with the transient stage
ignored, since the former provides a well-defined design limit. In the follow-
ing, the essential mechanics will be elucidated using a simple system, and
results will be cited for more general cases. The analysis is arranged
separately for spalling originating from edges or channel cracks (planar
geometry), and from holes.

a. Planar Geometry

Inserted in Fig. 50 is a long crack at a depth d in the substrate, driven by
the residual tension in the film. Plane strain conditions are assumed. The
film is attached to a semi-infinite substrate with the same elastic rnoduli.
Results without these restrictions will be cited later. The equivalent edge
force and moment due to a are

P =ah, M = ah(d- h)/2. (5.11)

oh

10 - d

S4

2

2 34 56
o t d/h

.2

d /h-3.87

-4

FiG. 50. The insert shows a spalling crack. The pic' is the mode mixity for crack at various
depths.
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Specialized from (3.12), the stress intensity factors are

Kiah = (h/2d)'/ 2 [cos co + "3(I - hid) sin col, (5.12)

K11 u/x-h = (h/2d)"l/sin w - \1(1 - hid) cos w]. (5.13)

where w = 52.07'. The mode mixity y, = tan-1 (KA'11 K1 ) is plotted as a
function of crack depth in Fig. 50. Notice K11 > 0 for small depth, but
K11 < 0 for large depth and, consequently, a pure mode I trajectory exists
at an intermediate depth.

This steady-state spalling depth da, is determined from (5.13) with
K11 = 0. Thus,

dss = 3.86h. (5.14)

The steady-state, mode I energy release rate can now be readily evaluated
from (5.12), which gives

G,, = 0.343a 2h/E. (5.15)

This pre-factor was cited in Fig. 43.
Suo and Hutchinson (1989b) carried out an extensive analysis to include

elastic mismatch and finite thickness of the substrate. The general solution
for arbitrary edge loads is summarized in Section III.B.5. The results for
spalling cracks caused by the residual stress in the film are reproduced in
Fig. 51. Observe that the spalling depth depends strongly on both elastic
mismatch and substrate thickness. However, the dimensionless stress
intensity factor is insensitive to the substrate thickness as long as H/h > 10.

There has been no formal proof that the spalling trajectory is configura-
tionally stable. One heuristic explanation, as shown in Fig. 51, is that
K11 > 0 when d < dm5, implying that a crack above d,, would be driven
down. Analogously, a crack below d,, would be driven up.

b. Spalling from Circular-Cut

Figure 52 shows an axial-section of a spalling crack emanating from the
edge of a circular-cut in the film, driven by residual tensile stress in the film.
In general, a hole in a pre-tensioned film acts like a stress raiser. However,
it differs from an open hole in a plate in that, for the former, cracking is
usually confined within a few times hole radius. Other cracking modes
around holes include channel cracks in films and decohesion of interfaces.
The latter will be treated in the next section.

As indicated in Fig. 52, the hole radius is bo, and the crack extends to a
radius b. For simplicity, the elastic moduli for the film and substrate are
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Fir,. 52. An axial-section of spalling from the edge of a circular-cut.
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taken to be the same, and the substrate semi-infinite. The equivalent edge
force P and moment M, per unit length, are still given by (5.11). The stress
state in the annulus between bo and b can be determined by the classical
plate theory, with the outer boundary clamped. The analysis shows that tne
moment and force at the crack front are modified by a factor:

M(b) = Mik, P(b) = P/k, (5.16)
where

k = 2[(1 + v) + (1 - v)(b/bo)2 ]. (5.17)

These loads are indicated in Fig. 52.
The results of Section III.B.l.d are applicable with moment and force

M(b) and P(b) used. In particular, the energy release rate is modified by
factor k 2, i.e.,

1 (M 2- + ), I= Ed 3, A = Ed. (5.18)
-2 7 A12

This result can also be derived by an energetic accounting, i.e.,

G = (2nb)-a OU/b,

where U is the strain energy stored in the clamped circular plate. From this
latter approach, it would be clear that the solution is the exact asymptote as
(b - bo)/h - co.

The stress intensity factors (5.12) and (5.13) are modified accordingly by

a factor of k. Thus, the steady-state depth d., is independent of b/bo, and
is identical to the plane strain result (5.14). The mode I driving force for
spalling now becomes

0.343a2h
G k 2  

(5.19)

Since k increases with b/bo, the spalling crack from a circular-cut would

usually arrest.

D. INTERFACE DEBOND

Pre-tensioned films are susceptible to decohesion or, more precisely,
de-adhesion, from substrates. Flaw geometry plays an important role:
Debonding emanating from an edge defect, a hole, or a through-cut would
behave differently. Analytical results for the first two geometries will be
summarized, and the third can be found in Jensen et al. (1990).
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FRa. 53, Mode mixity and energy release rate for a debonding crack.

I. Decohesion from Edges or Channels

Figure 53 illustrates a pre-tensioned film debonding from a substrate. The
edge load is a special combination of that studied in Section III.B.4, and the
notation there is followed. The misfit stress is equivalent to the mechanical
loads (see Fig. 26):

PI = P3 = oh, M3 = (1/2 + l/P7 - A)ah 2, MI = 0. (5.20)

Specialized from Eq. (3.22), the energy release rate is

oah I, Y.(1/2 + 1/ri - A)z
G= l " (5.21)

The loading phase w is defined by K = JKIh-4cexp(i,), as is consistent
with the convention in (2.45) with I = h. Both the driving force and mode
mixity are plotted in Fig. 53. Observe that the decohesion process is
inherently mixed mode, consisting of somewhat more sliding than opening.
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The effect of the substrate thickness on the driving force is significant when
the film is stiff.

Argon et al. (1989) have used the residual stress as a driving force to
measure interface toughness. The result in this section can also be used to
calibrate the residual stress effect on some interface fracture specimens,
e.g., the UCSB four-point flexure specimen. The complex interfacial stress
intensity factor is a superposition of the contribution from residual stress
and that from mechanical load.

2. Decohesion from a Hole

Figure 54 illustrates a decohesion crack emanating from the edge of a
hole in a pre-tensioned film. Results developed in Section C.2.b for
substrate spalling are still valid here. In particular, the energy release rate is
given by

ho-2

G = 2fk 2  (5.22)

where k is given by Eq. (5.17). The result is now valid for films and
substrates with dissimilar elastic constants, but the substrate is still assumed
to be much thicker than the film. The mode mixity is independent of b/bo
when (b - bo)/h is sufficiently large, and is identical to the plane strain
results (Fig. 53, h/H = 0).

Decohesion from a circular-cut is stable and has been used to determine
interface toughness by Farris and Bauer (1988) and Jensen et al. (1990).
This is particularly feasible when the film is transparent, so that the
decohesion radius b can be readily measured.

a o

FIG. 54. An axial-section of a decohesion annulus originated from an edge of a circular-cut.
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Fic. 55. A model for thermal shock spalling.

E. THERMAL SHOCK SPAILING

1. An Idealized Model

Consider a block of brittle material with a thin, pre-tensioned, surface
layer. Spalling is possible if the residual stress has a negative gradient with
depth. An example is depicted in Fig. 55. A semi-infinite body is initially
immersed in a heat bath of temperature To, so that a uniform temperature
is established in the body. Upon the removal of the block from the bath, the
surface temperature is assumed to drop instantaneously to the room
temperature T,. A biaxial tensile residual stress thus develops in a surface
layer, as shown schematically in Fig. 55. The equivalent edge force and
moment are also indicated. The stress profile changes with the time, and so
does the ratio MIP.

The problem features a dimensionless number

S= h/t4v, (5.23)

where h is the depth of the crack parallel to the surface, al) the thermal

diffusivity, and t the time elapsed after the removal of the heat source. At
any given time, a mode I crack path parallel to the surface is available-that
is, a number 4,, exists where K11 = 0. However, for small t, the depth h is
correspondingly small, and therefore the strain energy stored in such a thin
layer is insufficient to drive the spalling. Consequently, a certain time elapse
is needed before spalling. The following is an attempt to quantify these
considerations.

2. Spalling Depth and Time Elapse

Consider first the temperature and stress field prior to cracking. At a
given time t after the removal from the heat bath, the temperature at a
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depth z is
T(z, t) = To + (T, - TO) erfc(z/2\iaD). (5.24)

The biaxial, tensile, thermal stress field varies with the depth and time, in
accordance with

ax = U, = a(z, t) = aoerfc(z/2N'taD), (5.25)

where

CO = CE(TO - T)E/(1 - v), (5.26)

and cE is the thermal expansion coefficient. These are classical solutions,
which may be extracted from standard textbooks.

Next consider the half space with a spalling crack (Fig. 55). The resultant
force and moment can be expressed as

P = laoh, M = (½I - J)a 0 h2 , (5.27)

where

AD = erfc(u/2)du, A)= u erfc(u/2) du. (5.28)

The stress intensity factors can be calculated from Section IlI.B.1.d.
The number ý corresponding to a mode I trajectory is determined by

enforcing Kit = 0. The problem involves a nonlinear algebraic equation,
and the numerical solution gives

h1S = 6.82VtiaD. (5.29)

The corresponding mode I stress intensity factor is

K, = 0.190ao'Iis. (5.30)

Given the toughness and stress level, the depth h,, may be predicted from
(5.30), and the time elapse for spalling can then be estimated from (5.29).
Observe that the spalling depth is independent of the thermal diffusivity, as
a feature of this idealized model. As an example, consider a glass with
K = 0.7 MPa mi/ 2 , a0 = 100 MPa, aD = 0.7 x 10-6 m2 /s. The predicted
crack !,.pth is h,, = 1.4 mm, and the time to spalling is i = 6 x 10- 2 s.
This tiny time elapse is possibly an outcome of the idealized temperature
boundary condition that has been adopted.

VI. Buckle-Driven Delamination of Thin Films

In many film/substrate systems, the film is in a state of biaxial compres-
sion. Residual compression has been observed in thin films that have been
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Fim. 56. The photograph on the left from Argon et at. (1989) shows a SiC film on a Si

substrate delaminating as a wavy circular blister. On the right is a photograph supplied b%
M. D. Thouless, which shows examples of the straight-sided blister and t.ie telephone cord
blister occurring in a multilayered film delaminating from a glass substrate.

sputtered or vapor deposited and it can arise from thermal expansion mis-
match. Some remarkable failure modes of such systems have been observed,
examples of which are shown in Fig. 56. These pictures reveal regions where
the film has been buckled away from the substrate. Various shapes of the
buckled regions evolve, including long straight-sided blisters, circular blisters
with and without wavy edges, and the so-called telephone cord blister, which
is perhaps the most common morphology. The failure entails the film first
buckling away from the substrate in some small region where adhesion was
poor or nonexistent. Buckling then loads the edge of the interface crack
between the film and the substrate, causing it to spread. The failure
phenomenon couples buckling and interfacial crack propagation. The
straight-sided blister grows at one of its ends. The telephone cord blister
grows at its end as if a worm were tunneling beneath the film.

This section presents an analysis of the straight-sided and circular blisters
and concludes with some speculation about the origin of the telephone cord
morphology. It will be seen that a key aspect of the phenomena is the mixed
mode fracture behavior of the interface, wherein F(y/) increases sharply
with increasing mode 2.

Formulas relating the energy release rate of the interface crack to the
buckling parameters were derived for one-dimensional ply buckles on the
surface of laminated composites by Chai et al. (1981). Essentially identical
results were obtained by Evans and Hutchinson (1984) and Gille (1985) for
the thin-film problem. The energy release rate for the circular blister in
biaxially compressed films was given by Evans and Hutchinson (1984) and
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Yin (1985). The significance of the mixed mode character of the interface
crack tip was apparently first appreciated by Whitcomb (1986), who showed
that the crack tip becomes predominately mode 2 as a one-dimensional ply
buckle spreads. His observation was essential to explain why the buckles do
not keep spreading along their edges under constant overall load-that is,
why the buckles have a characteristic width. Whitcomb was concerned with
compressive failure modes in layered composites. Here, the concern will be
with thin films under equi-biaxial compression, but a number of the results
and conclusions carry over directly to ply delamination. Storakers (1988)
and Rothschilds et al. (1988) deal with various aspects of buckling and
delamination in composites, and these authors cite relevant literature in the
coml.osites arena.

This section starts with a one-dimensional analysis of the infirtely long
straight-sided blister, closely paralleling the analysis of Whitcomb (1986).
Given the availability in Section III.B.4 of the relationships between the
interface stress intensity factors and the moment and resultant force change
at the edge of the buckle, the one-dimensional analysis can be carried out in
closed form. The analysis of the circular blister, which requires some
numerical work, is presented next. The two sets of results are then com-
bined in an analysis of steady-state propagation of a straight-sided blister.
The steady-state problem gives perhaps the sharpest insights into design
constraints on compressed films.

A. THE ONE-DIMENSIONAL BLISTER

Consider an x-independent segment of the straight-sided blister shown in
Fig. 57. The film is taken to be elastic and isotropic with Young's modulus
E1 , Poisson's ratio v,, and thickness h. The substrate is also assumed to be
isotropic but with modulus E2 and Poisson's ratio v2 . The substrate is
modeled as being infinitely deep. The film is assumed to be unattached to
the substrate in the strip region -b _5 y < b. A plane strain interface crack
of width 2b exists between the film and the substrate.

The unbuckled film is assumed to be subject to a uniform, equi-biaxial
compressive in-plane stress, ag, = c-,, = -a. In the unbuckled state, the
stress intensity factors at the crack tips vanish. Only when the film buckles
away from the substrate are nonzero stress intensity factors induced. Under
the assumption that h 4 b, the film is represented by a wide, clamped Euler
column of width 2b. The complex stress intensity factor K at the right-hand
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tip is related to the moment M and to the change in resulta;nt stress AN at
the right-hand end of the column by the relationships given for the 2-layer
problem in Section III.B.4. Use of the 2-layer solution to characterize the
crack tip field is justified if h/b < 1, which is, in any case, the condition for
the validity of the Euler theory. In what follows, the 2-layer solution is first
specialized for the present applications. This solution is also used in the
analysis of the blister test discussed in Section VII, and should have fairly
wide applicability. Then, the Euler solution is presented and is coupled to

the 2-layer solution.

1. General Loading of an Edge Crack on the Interface
between a Thin Film and Substrate

Let M and AN be defined with the sign convention in Fig. 57. These
quantities will be identified with the moment/unit length and the change in
resultant stress at the right end of the wide Euler column. Specializing the
solution of Section III.B.4 to the limit of the infinitely deep substrate, one
finds for the interface crack:

G = 6(1 - v2)E-'h-3 (M2 + h2 AN 2/12), (6.1)

[6(1-o)]' 1/2 h3N2 iMh AN
Khic = - 2- j + e (6.2)

Im(KhI) _12 MMcos w + h ANsin wta=/= (6.3)tan q Re(KhL') -- ,T2 M sin co + h AN cos to

h

UNBUCKLED A N 42 1

LOCAL LOADING OF
BUCLEDINTERFACE CRACKBUCKLED

FiG. 57. Geometry of the one-dimensional blister, and conventions for the elasticity
solution characterizing conditions near the tip of an interface crack between a thin film and an
infinitely thick substrate. Top left: unbuckled; bottom left: buckled; right: local loading of
interface crack.
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FIG. 58. Phase factor w(ct,fi) in (6.2) and (6.3).

Here, co -c-o(c,,, h/H = 0), which is plotted in Fig. 58 for ,i = 0 and
,8 = u/4. The mode mixity parameter •V is defined using the film thickness
h as the reference length 1.

2. Euler Column Solution and Coupling
to Interface Edge Crack Solution

The one-dimensional deformation of the wide column in Fig. 57 is
characterized by the y- and z-displacements, V(y) and W(y). These are
defined to be zero in the unbuckled state with pre-stress a, = ayy = -a.
The wide column is taken to be characterized by von Karman nonlinear
plate theory with fully clamped conditions at its edges, i.e.,

V= W=W,y=0 aty=+±b. (6.4)

The change in the y-component of the stretching strain measured from the
unbuckled state is

EY = V, y + wy 2, (6.5)

while the bending strain is W, yy. With N, and N. as the resultant stresses
and with AN, = Nx + ah and ANy- Ny + ah as the changes in the
resultant stresses from the unbuckled state, the strain component cy is
related to ANy by

C. = (I - v2) ANy/(Eh). (6.6)

Since c, = 0, AN, = v, AN.. The bending moment is related to the bending
strain by My = DW, yy, where D = El h3/[12(1 - v2)] is the bending stiff-
ness. In-plane equilibrium requires ANY, y = 0. Therefore, ANy can be
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taken to be the value at the end of the beam, AN. Momeni equilibrium
requires

D ff,.vvv - (AN - ch) W,vv = 0. (6.7)

The solution to the preceding system of equations is given in (6.8)-(6.12):

W 2= Lh[l + cos(njy/b)], (6.8)

72 Dh
M -- M.() = 2 b ' (6.9)

2 b2

AN D 2 2 (6.10)
4N P

The amplitude of the buckling deflection, ý, has been defined such that
W(0) = ýh. It is related to the residual stress by

[4 ( _ )]1/2
i= --- , (6.11)

where
;72D ;T2  E1  /h 2.

Uc = bh= (1 (1 (6.12)

Here, or is the classical buckling stress of a clamped-clamped wide plate.
The residual compression in the film, a, must exceed ac if the film is to
buckle away from the substrate for a given interface crack length 2b. The
nondimensional "loading parameter" is a/oa. Since ar decreases as b
increases, c/ac increases as b increases.

The energy release rate is determined by substituting the expressions for
M and AN in (6.9) and (6.10) into (6.1), with the result

G = [(1 - v2)h/(2Ej)](c - ac)(a + 3ac). (6.13)

This result is in agreement with Chai et al. (1981), Evans and Hutchinson
(1984), and Gille (1985). Substitution of the same expressions into (6.3)
gives

4 cos cv + ,,73 sin cv
tan y/ = 4cst+ siu)(6.14)-4 sin &j + % cos co

Recall that ;v is defined relative to the reference length I = h, and is given
here for the crack tip at y = +b.

For large c/la, G asymptotically approaches

Go - [(I - v2 )h/(2E,)Ja 2. (6.15)
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FiG. 59. Energy release rate and buckling deflection for one-dimensional blister.

This is just the strain energy per unit area in the film, which is available
when released subject to the plane strain constraint E, 0 .t The normalized
energy release rate is

G 1 + 3 , (6.16)

which is plotted in Fig. 59 together with the buckling deflection amplitude
from (6.11). The interface crack length 2b enters the expression for G
through cr in (6.12). For a given pre-stress a, G approaches G. as b -0;

it vanishes when ac = a; and it attains its peak value 4Go/3 at a/ac = 3.
The fact that G exceeds Go is not a violation of energy conservation. The
total energy released per unit length of buckle (i.e., the integral of 2G with
respect to b) is always less than 2Gob, and only approaches 2Gob as b --
The explicit expression is given later in (6.35).

t The strain energy per unit area stored in the film is [(I - v1)h/E, l2. Reducing N, to zero

subject to c, = 0 releases (6.15) when negligible bending energy remains in the film. The results
in (6.8)-(6.16) are valid for residual stresses for any a, as long as c: = -a. They apply not only
to the thin film problem but also to the x-independent mode of delamination for a surface ply
on a thick composite plate.
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FIG. 60. Phase of loading V/ at the right-hand crack tip for the one-dimensional blister.

Curves of the mode mixity measure V/ at the right-hand crack tip are
shown as a function of a/la in Fig. 60 for several values of a, all with
f = 0. Elastic mismatch affects V/ only through co in (6.14). Since w is
relatively insensitive to mismatch when P = a/4 (see Fig. 58), plots of W
versus a/a, have not been displayed for this case. For a/oc slightly above
unity, and thus small ý, (6.14) gives

tanw = -cot t, or ;v =- -((7t/2) - co). (6.17)

In the absence of elastic mismatch, &o = 52.1* and V, starts at -37.9*. As
a/tr increases and as ý increases, the relative proportion of mode 2 to
mode 1 increases. The value of ar/ac at which the crack tip loading becomes
pure mode 2 (i.e., V = -90*) can be obtained from (6.11) and (6.14).

a'a, = 1 + 4tan2 to, (6.18)

which is attained when • = (4/Vs)tan co. Note that this point where all
mode 1 is lost is a fairly strong function of elastic mismatch. For no
mismatch, arac = 7.55. The strong increase in mode mixity as the buckle
spreads has important implications for buckle-driven decohesion, as will be
discussed with the aid of several interface toughness functions in the next
subsection.

Before applying the results of this section, we note in passing that the von
Karman nonlinear plate equations accurately represent the buckling behavior
as long as h/b 4V 1 and rotations satisfy (W, y)2 4 1. Comparison of the
predictions from von Karman theory with the more accurate elastica, for
example, reveals that the present predictions retain reasonable accuracy for
buckling deflections W(0) that do not exceed b/3. Note from Fig. 59 or (6.11)
that W(0) - 3.46h when a/acr, = 10. Thus, for example, if h/b is less than
about 1/It, the above predictions retain accuracy for /r/a, as large as 10.
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3. Extent of Interface Decohesion:
The One-dimensional Blister as a Model

There is often some rate dependence associated with buckling-driven
decohesion, due most likely to species in the air gaining access to the inter-
face crack tip, a process akin to corrosion assisted crack growth. The
discussion that follows will neglect any rate dependence. i: will bc assumed
that interface crack advance occurs when the condition G = F(0) is reached.

Consider first the consequences of assuming an ideally brittle interface
where the critical energy release rate is mode-independent, i.e., G = G'. To
facilitate the discussion, assume an initial decohered region of width 2b,
exists on the interface, and imagine a scenario in which biaxial compressive
stress in the film a is increased, due, for instance, to temperature change
when there exists a thermal expansion mismatch between the film and
substrate. For a given set of parameters of the system, plot curves of G/G'
versus b at various levels of a using the normalized curve in Fig. 59. Such
curves are sketched in Fig. 61a, where the lowest curve corresponds to the
value of a at which the buckling starts with b = bi. Denote by a, the value
of a associated with the curve that intersects the fracture criterion,
G/Gc = 1, at b = bi. In the scenario in which a is increased, one would
observe buckling without decohesion for a between (o'c), and a.. At a*,
crack advance would be initiated and would necessarily be unstable since
G/G' exceeds I as b increases. The blister would spread dynamically
without arrest.

Alternatively, suppose a level of a exists below a., say a = Oa in Fig. 61 a,
and suppose an external agent forces the decohered region to expand until
b reaches the point where G/Gf = 1. As in the previous scenario, the crack
would expand unstably from that point onward. In some previous work
(e.g., Gille, 1985), it has been argued that the combination of G', b, and a
lies on the decreasing portion of the G versus b curve, thereby allowing
stable crack growth. Although this is a possibility, this argument seems
implausible as a general explanation because the drop from the peak to the
asymptote for b -- co is small. In fact, G increases monotonically with
increasing blister radius in the case of the circular blister discussed in the
next subsection; thus, there is no drop and there would be no arrest for that
geometry.

The qualitative influence of the mode dependence of interface toughness
on the arrest of blister spreading can be anticipated from the relation
between y/ and a/acr in Fig. 60. Neglect for the moment any consideration
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FiG. 61. Schematic of instability analysis of one-dimensional blister, a) based on an ideally
brittle interface with propagation condition G = G'. b) Based on G = r(V/), where r increases
with increasing Iwt.

of fl-effects in the elastic mismatch, and suppose that the toughness function
F(yf) increases with increasing I v/1 as discussed in Section II. Then, curves of
G/rF(w) versus b at various levels of a would display the trends shown in
Fig. 61b. Given an initially decohered region of width 2bi, the blister would
spread dynamically when a attains oa, and would arrest at b = b,. With
further increase of a, the blister would spread stably with the condition
G = r(co) maintained. Whether it would spread beyond the point where (6.18)
is attained depends on the condition governing pure mode 2 crack growth.

A quantitative prediction requires the specification of a specific functional
form for F(y,). The discussion that follows will use the forms (2.40) and
(2.44). which are plotted in Figs. 10 and 11, for the purpose of illustration.
They will be used again in the analyses of the circular blister and the steady-
state growth of the straight-sided blister. For either form, let

r(y/) = Gff(yi), (6.19)
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FIG. 62. Mode-adjusted crack driving force for the one-dimensional blister for two families
of interface toughness functions. No elastic mismatch.

where

f(y/) = [1 + (A - 1) sin 2 V]-f for (2.40), (6.20)

f(V) = [1 + (1 - A) tan2 q/] for (2.44). (6.21)

Then, G/f(Vy) can be regarded as a mode-adjusted crack driving force in the
sense that the criterion for crack advance is G/f(VI) = GO. Curves of
normalized crack driving force are plotted in Fig. 62 for various choices of
A for each of the two families of toughness functions. The curves are
obtained directly using (6.16) and (6.14), and are shown for the case of no
elastic mismatch (a = 8 = 0). Recall that in each case the choice A = I
reduces to the ideally brittle criterion G = GO, while A = 0 coincides with
the criterion K1 = Kc a (EGc)1/ 2.

The two families of interface toughness functions (6.20) and (6.21) prob-
ably bracket toughness trends for a class of material combinations, such as
those discussed in Section 11, in the sense that (6.20) most likely
underestimates the rate of increase of r(v/) with respect to y near mode 2
while (6.21) probably overestimates that rate of increase. Depending on A
and the other parameters of the system, either arrest or unarrested
spreading of the blister can occur according to (6.20). Arrest will always
occur according to (6.21), assuming A < I.

The effect of elastic mismatch on the normalized driving force is shown
in Fig. 63 for one choice of A for each of the two toughness functions, in
each case for various ot with fl = 0. A stiff film on a compliant substrate
(a > 0) enhances the peak crack driving force and accentuates its fall-off
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FIG. 63. Effect of elastic mismatch on the mode-adjusted crack driving force for the
one-dimensional blister: (a) based on (6.20); and (b) based on (6.21).

with increasing b. When i ;d 0, the approach is similar to that just
described except that now the criterion for advance is G/f(o') = Gc, where
0 is associated with some material-based length 1 through (2.45). Since Y/ in
(6.14) is defined for the choice I = h, one must take into account the
relation (2.49) between y/ and 0 in determining the crack driving force.

B. THE CmcuLAR BLISTER

In this section, the axisymmetric counterpart to the one-dimensional
blister is considered. An analysis along similar lines to that presented here
was given by Chai (1990) for the special case where no elastic mismatch
exists between the film and the substrate. The geometry for the circular
blister is similar to that in Fig. 57 except that the radius of the buckled
region is taken to be R. The analysis again couples a buckled plate repre-
senting the circular decohered region of the film with the elastic solution for
a semi-infinite edge crack on an interface, as depicted in Fig. 57 and as
presented in Section VI.A. 1. For the axisymmetric geometry, the nonlinear
von Karman plate equations cannot be solved in closed form, except asymp-
totically for sufficiently small buckling amplitudes. Numerical methods
must be used to solve the equations for the buckled plate.

1. Governing Equations

The von Karman nonlinear plate equations for axisymmetric deforma-
tions of a completely clamped circular plate of radius R, thickness h, and
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subject to an equi-biaxial compressive stress a in the unbuckled state are as
follows. Let r be the distance from the center of the plate normalized by R,
AN,(r) the resultant radial in-plane stress, AN,(r) =_ N,(r) + ah the change in
this component from its value in the unbuckled state, and let W(r) be the
vertical displacement component. With

O(r) = [6(1 - v2)]"/2 h -1-- (6.22)

as a measure of the rotation, the two equations of equilibrium can be
written in nondimensional form as

d (rd&\
r - r-4 + ro(d - A.F') = 0, (6.23)

dr 3 dAN + r02 = 0, (6.24)

where 6 = ahR2 /D and ANR, ANrR 2 /D. As before, D = E, h3/[12(l - vi)]
is the bending stiffness. The conditions at r = 0 are 0 = 0 and d AR/dr = 0.
The fully clamped conditions at r = 1 require

€=0, d (r AS) - v, ANR, = 0. (6.25)
dr

The energy release rate, interface stress intensity factors, and mode mixity
parameter in (6.1)-(6.3) are evaluated using the bending moment and the
change in resultant stress at the edge of the plate, which are given by

M = DhR- 2[6(1 - v_2)1-71 2(dck/dr), I, (6.26)

AN = DR-2 (AN•). i-

2. Asymptotic Solution for Small Buckling Deflections

Evans and Hutchinson (1984) derived a formula for the energy release
rate using an asymptotically valid solution to the preceding system of
equations for small buckling deflections. That result will be reproduced
here without derivation along with a new companion result for the mode
mixity parameter V/.

The classical buckling stress of a clamped circular plate is

*=2D .2235 E( 6h2
C 2 1.231 v _ V2 (6.27)
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Where y = 3.8317 is the first nontrivial zero of J.(x), the Bessel function of

the first kind of order one. The associated axisymmetric mode is

"1I(r) = 10.2871 + 0.7129J0(pur)]h, (6.28)

where J 0(x) is the Bessel function of the first kind of order zero. The mode
is normalized such that I4•(0) = h.

The asymptotic solution is obtained by developing an expansion of the
buckling flection (and other quantities) in the form

W(r) = ýW, + 2!4r + ._., (6.29)

where 4 is the buckling amplitude, To lowest order, 4 =51h, where 6 is the

deflection at the center of the plate. The asymptotic relation between 4 and

a/i* is

S= - 1 ,(6.30)

where cl = 0.2473(1 + v,) + 0.2231(1 - v2). The asymptotic result for the
energy release rate is

-(c2 ¶) - ,1 (6.31)

where c2 = [1 + 0.9021(1 - vl)]-' and

Go = (1 - vt)ha 2/E1  (6.32)

is the strain energy per unit area stored in the unbuckled film.t The asymp-
totic relation between the mode mixity parameter for the interface crack
and the buckling deflection is

cos w + 0.2486(1 + vl)4 sinc
-sin ow + 0.2486(1 + v')4cos wc

For sufficiently small V, t approaches (6.17), just as in the case of the one-
dimensional blister. The asymptotic results are shown in Figs. 64 and 65,
where they are compared with the results of an accurate numerical analysis
described next.

'The expression for c, given here corrects the coefficient given by Evans and Hutchinson
(1984). Their derivation made use of a result for the initial post-buckling behavior of a clamped
circular plate given in the text by Thompson and Hunt (1973), which does not correctly account
for the Poisson's ratio dependence. The present result incorporates the corrected solution. The
difference between c2 and the earlier result of Evans and Hutchinson is less than 107o for

= 0.3.
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FiG. 65. Phase of loading V' at interface crack tip for the circular blister for three levels of
elastic mismatch.
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Fir,. 66. Mode-adjusted crack driving force for the circular blister: a) based on (6.20), and
b) based on (6.21).

3. Numerical Solution for Arbitrarily Large Buckling Deflections

An accurate finite difference method was used to solve the coupled
ordinary differential equations (6.23) and (6.24), subject to the stated
boundary conditions. Newton iteration was used to obtain a converged
solution for each specified value of ala,*. All calculations were carried out
with vt = 1/3. The results for the quantities of interest are shown in Figs.
64-66. The results for G are in agreement with calculated results of Yin
(1985) and Chai (1990), while the present results for V for the case of no
elastic mismatch are in accord with the trends of G, and G2 presented by
Chai. Note that the curve for h AN/(.4"-2M) in Fig. 64 permits y/ to be
computed using (6.3) for any elastic mismatch.

The energy release rate of the interface crack increases monotonically
with increasing R (decreasing a¢*) for the circular blister, as can be seen in
Fig. 64. Its approach to Go* is very slow. At a/a*¢ = 50, G/GO* =_ 0.85 (not
shown in plot). The asymptotic formula (6.31) is reasonably accurate for
a/at* up to about 3. The asymptotic formula (6.30) for 61h retains its
accuracy to surprisingly large values of a/r*¢. A plot of 61h is not shown,
but, with ý m 61h, (6.30) overestimates the accurate numerical result at
a/a*€ = 10 by only 7%7. As in the case of the one-dimensional blister,
buckling deflections that are large compared to the film thickness imply
residual stresses that are many times the classical buckling stress a¢* of the
corresponding plate of film. The asymptotic formula (6.33) for V' is also
valid for values of a/cr* up to about 2 or 3, as can be seen in Fig. 65.
However, V/ does not vary as strongly with o/,7" for the circular blister as
for the one-dimensional blister (cf. Fig. 60), a feature also emphasized by
Chai (1990). In particular, the interface crack of the circular blister does not
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a.tain pure mode 2 in the range of a/l* sho,.n, as its one-dimensional
counterpart does. Even for r/o'a* as large as 50. some mode I persists with
V/ = -840 for a = = 0. This feature may be at the heart of why growth
of the blisters is favored along a curved front rather than a straight one.

Plots of the normalized crack driving force G/[Gof(ql)] are shown in
Fig. 66 for the same two interface toughness functions, (6.20) and (6.21),
used to construct the plots for the one-dimensional blister in Fig. 62. For
reasons noted previously, the crack driving force does not fall off nearly as
rapidly as the blister spreads as for the one-dimensional blister. The fact
that circular blisters have been observed for some systems is indirect
evidence for an interface toughness function that increases sharply with
increasing mode 2, such as that used in constructing the curves in Fig. 66b.

4. Tendency toward Spalling as the Blister Spreads

Circular spalls are observed in some systems where the film is brittle.
Evidently, the radius of the blister increases until it reaches a point where
the crack kinks out of the interface into the film, spalling out a circular
patch of film. The mixed mode conditions at the tip of the interface crack
derived in the previous sections contribute to the likelihood of this type of
spalling in two ways. First, with reference to the kinking solution in Section
II.C.5, one notes that kinking upward into the film is favored energetically
as y/ becomes more negative, with the largest value of G',,I/G attained at
/ =-60*. Secondly, as the blister spreads and as IV'I increases, the G

needed to advance the interface crack increases, assuming F(,) increases
with increasing IV/1. Thus, as the blister spreads, the maximum energy
release rate available for a crack kinking into the film, G.ax, increases,
Kinking, and spalling, is to be expected if GLm,,x attains the fracture
toughness of the film.

C. CONDITIONS FOR STEADY-STATE PROPAGATION

OF A STRAIGHT-SIDED BLISTER

An example of the straight-sided blister is shown in Fig. 56 and is
sketched in Fig. 67b. Under steady-state conditions, the width of the blister
remains fixed and the growth occurs by interface crack advance along the
more-or-less circular end of the blister. An approximate analysis of the
conditions for steady-state blister propagation is given.
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FIG. 67. a) Condition for steady-state propagation of straight-sided blister for the interface
toughness function (6.21). b) Mode-adjusted crack driving force on the sides of the straight-
sided blister. The condition that the sides are in an arrested state is G/r(Wv) < I.

Under steady-state conditions, the total energy released per unit advance
of the blister is precisely the energy released by a unit length of the one-
dimensional blister of Section B.2 in spreading from the smallest width for
which the buckle has nonzero amplitude, 2bo= 27r[D/(ah)] 2 , to 2b. Thus,
the average steady-state energy release rate of the advancing end is

GSS = b-1 G db, (6.34)

where G is given by (6.16). Noting that at, depends on b according to (6.12),
one readily obtains

G I

-S-( Go.  (6.35)

It is also usef-li to note that bo/b (a/a)I 2 .
An exact propagation condition would require that G,, be equal to the

average of the interface toughness F(V/) across the propagating end of the
blister. This, in turn, would require knowledge of the precise distribution of
V/ across the end of the blister. As an approximation, take

GSS = F(Y,*), (6.36)
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where y* is the mode mixity parameter for a full circular blister of radius
b subject to the same biaxial stress a. To see how this generates specific
predictions, again represent the interface toughness function as

F(y/) = Gcf( v). (6.37)

and rewrite the propagation condition (6.36), using (6.35) and (6.15), as

G2 _ (1 -I')~
Oo IGo - 2E1 Ga 1-(). (6.38)

The right-hand side of this equation is a function of a/rc since V* is a
function of a/c* (cf. Fig. 65) and a*/ac = 1.4876.

The right-hand side of (6.38) is plotted in Fig. 67a for a choice of f(I')

used previously, (6.21), for several values of A. These curves were computed
using the solid line curve for eV* versus a/r* in Fig. 6.10 for the case

S= f=0 with v, = 1/3. Recall that ) = 0 corresponds to the interf.ace
fracture criterion Ki-- K', while A = 1 corresponds to the Griffith
criterion G = G'. To interpret these curves, it is helpful to present results
that display whether or not the parallel sides are in a state consistent with
interface crack arrest. For this purpose, the ratio G/r(w/) holding on the
sides is plotted as a function of al/a in Fig. 67b, where G is given by (6.16)
and y/ is given by (6.14) for the straight-sided blister. The combination of
(6.16) and (6.38) gives

G _ 1 j- (1 + 3 f(V*) (6.39)

which is the expression used in plotting the curves in Fig. 67b. The fact that

G/F(V) -- 0 at l/arc = 7.55 for all A < I is a consequence of unbounded
mode 2 toughness assumed in connection with the choice (6.21) for f(V/).

Consider the curves in Fig 67 for one of the A-values such that A < 1.
Note that [G/l(V/)]sides < I for all values of a/ac greater than or equal to
its value at the minimum of (1 - v')a-rh/(2EGc). Thus, the sides of the

blister are in a state consistent with interface crack arrest everywhere to the
right of the minimum in Fig. 67a. By contrast, fG/F(t/)]5 id,, exceeds unity
for nearly all a/ar to the left of the minimum, implying a lack of con-
sistency with arrest of the sides. One concludes that the relevant branch of
each of the curves for A < I in Fig. 67a is that to the right of the minimum.
(The transition G/F(yl) so near the minimum may be somewhat fortuitous
since the solution is not exact.)
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For a particular 2 (. < 1), the smallest value a consistent with steady-
state propagation is given by

(1 - c COO, (6.40)

where c(,) denotes the value of the ordinate in Fig. 67a at the minimum.
Equivalently, if a is regarded as prescribed, (6.40) gives the smallest value
of film thickness h consistent with steady-state propagation. The half-width
of the blister associated with (6.40) is

b 7r fd(2 ) 1/2[ E, h 1/4

h - 2 '[j2c(-- /'"2j [(1 - v•)GJ '(6.41)

where d(2) is the value of a/a, at the minimum.
For film stresses a larger than the minimum in (6.40), or for film thick-

nesses h larger than the minimum, solutions exist on the branch to the right
of the minimum of the curves in Fig. 67a. The associated width of the blister
increases with increasing a. Equation (6.41) continues to apply with (d, c)
denoting a point on the curve in Fig. 67a. From a practical standpoint, the
minimum is probably of the most interest. For a film stress less than the
minimum (or a film thickness less than the minimum), extensive propaga-
tion of an initial blister can be avoided.

The behavior associated with the interface fracture criterion G = G'
(i.e., 2 = 1) must be discussed separately. From Fig. 67a, one notes that
there exists a propagation solution for all values of (1 - v•)a 2h/(2E, Gf)
greater than unity. But, from Fig. 67b, one sees that these solutions are
inconsistent with arrest of the interface crack along the sides. Thus, it must
be concluded that there exist no steady-state straight-sided blister solutions
when the classical criterion G = G' is presumed to hold.

The particular interface toughness function, (6.37) with (6.21), was
invoked to illustrate the calculation procedures for steady-state blister
propagation and to bring out some of its qualitative features. The example
reveals that steady-state blister propagation, as opposed to complete
decohesion of the film, is innately tied to the property of the toughness
function wherein it increases with increasing proportion of mode 2.
Details of the propagation of the straight-sided blister do depend on the
specifics of f(V,). For example, the previous calculations were repeated
using (6.20) rather than (6.21). The function f(q,) in (6.20) levels off as
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IVI'1 approaches 7/2 as opposed to (6.21), which increases sharply as the
mixity approaches pure mode 2. Only for a fairly small range of 2
(i.e., 0 :s ;. < 0.15) does there exist a steady-state solution satisfying the
conditions discussed in the preceding. For . in the range 0.15 < ,. _ I.

no solutions exist consistent with interface crack arrest along the straight
sides. Whether solutions exist in this range that are characteristic of the
telephone cord morphology (cf. Fig. 56) is not known. The answer to this
question would obviously shed light on the nature of the interface
toughness function.

We end this section with some additional speculation on the possible
origin of the telephone cord morphology of blister propagation. The
approximate solution for the straight-sided blister does not address the issue
of the stability of the configuration. For example, is the symmetric con-
figuration (symmetric with respect to the line parallel to, and centered
between, the straight sides) stable with respect to nonsymmetric perturba-
tions of the interface crack front? One possibility is that, at sufficiently
large values of (I - vI)a2h/(2EIGc), the steady-state straight-sided con-
figuration becomes unstable. Partial support for this speculation comes
from stability results for the circular blister (unpublished work in progress).
The circular blister becomes unstable to nonaxisymmetric perturbations of
the interface crack front at sufficiently large a. The value of a/a* at which
this instability occurs depends on the choice of r(m), but is typically at or
above the value associated with the minimum of (1 - v2)Cr 2h/(2E1G') in
the steady-state problem.

VII. Blister Tests

The blister test is used to measure interface toughness for a crack on the
interface between a film and a substrate. The test avoids edge effects of
various kinds and is highly stable. Although mixed mode conditions prevail

at the tip of the interface crack, most approaches to the subject have
concentrated on the relation between the energy release rate and the various
parameters of the test (Liechti, 1985; and Storakers, 1988). Recent work by
Chai (1990) and Jcnsen (1990) has elucidated the mixed mode character of
the test using an approach similar to that described in the previous section.
The separated blister is treated by plate theory and is coupled to the 2-layer
edge crack solution of Section VI.A.1 to give G and y/. The results that
follow are taken from Jensen (1990).
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A. PRESSURE LOADING

A circular blister loaded by a pressure p acting between the film and
substrate is depicted in cross-section in the insert in Fig. 68. The film is
modeled as a clamped plate of radius R subject to lateral pressure p. At
small deflections, within the linear range, the moment at the edge of the
plate is

M = pR2 , (7.1)

and the deflection 6 at the center of the plate is

S= &- RpR4 /D . (7.2)

The resultant in-plane stress N is of order p 2 . Thus, for sufficiently small p,
by (6.1) and (7.1),

(3 V)2R4 38 Eih362

G = "3 3 (1 -vR (7.3)

and, by (6.3),

tan V = -cot co = -((7r/2) - w). (7.4)

This is the same combination of mode 1 and 2 that exists for the buckled
blisters at small buckling deflections. As in those problems, V is defined
here with I = h. Equation (7.4) is valid for sufficiently small p even in
the presence of an initial pre-stress in the film since the change in mem-
brane stress, AN, at the edge of the plate is of order p 2. However, the
range of applicability of the formula will depend on the residual stress
level.
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FiG. 68. Energy release rate and ratio of edge loads for a blister under uniform pressure.
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There are only a few results in the literature based on rigorous 3-D
elasticity solutions that permit a direct assessment of the approximate
procedure that couples the plate solution to the 2-layer edge crack solu-
tion. Kamada and Higashida (1979) present results for K, and K, for the
case of no elastic mismatch, based on a full elasticity solution to the
circular blister loaded by uniform pressure. They find that V = -30 for
R/h = 5 and Y/ = -37' for Rilh = 10. This can be compared with
w = -37.90 from (7.4) when a = ,# = 0. Thus, their results suggest that
the approximate procedure is accurate for R/h as small as 10. Erdogan
and Arin (1972) have presented results for a penny-shaped blister crack
on an interface between materials with the mismatch characteristic of
epoxy and aluminum, but a numerical comparison with the present
results is not meaningful since the largest value of R/h for which they
have reported results is 2.5.

Calculations for G and V at large deflections have been carried out by
Chai (1990) and Jensen (1990) using the nonlinear von Karman plate
equations for the case of no residual pre-stress. Results from Jensen are
given in Fig. 68 as plots of a nondimensional G and Nh/M versus p/po,
where N is the resultant in-plane radial stress at the edge of the plate and

16 El/h\ 4
PO = 3 ( -- v )( (7.5)
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FIG. 69. Phase of loading of interface crack tip for several levels of elastic mismatch for a
blister under uniform pressure.
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FIG. 70. Deflection-pressure relation for a blister under uniform pressure.

The ratio Nh/M is the basic information needed in (6.3) (with AN - N) to
generate y for any elastic mismatch between the film and substrate. The
curves of ;v versus P/Po are plotted in Fig. 69 for various a with P = 0.
As p increases, the ratio Nh/M increases giving rise to an increasing
proportion of mode 2 to mode 1. The increase only entails a change of V/ of
about 15P. For completeness, curves of 6/h versus P/Po are shown in
Fig. 70. The curves in these figures were computed with v, = 1/3, but they
are only weakly dependent on v1 .

31R'(1-v•)/[2 68E ,h• Nh/M
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FIG. 71. Energy release rate and ratio of edge loads for a blister under point load.
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B. POINT LOADING

The theoretical predictions for a circular blister loaded by a concentrated
load P at its center (see insert in Fig. 71) have also been computed by
Jensen (1990). In the linear range, the moment at the edge of the clamped
plate is

I
M = -P, (7.6)

and the center deflection is
3(1 - v2)PR2

-= 43(El h3  (7.7)

Then, by (6.1),
2E2 h3e52

G = 3(1 - vh)6 ' (7.8)

and V/ is again given by (7.4). Curves of a nondimensional G and Nh/M
versus 6/h for arbitrarily large 6/h are shown in Fig. 71. Curves of Y versus
6/h are given in Fig. 72 for various ct with O = 0. The mode dependence is
similar to that for the pressurized blister, except with a somewhat larger
change in y/ as the deformation becomes nonlinear. The dependence of 1/h
on P is plotted in Fig. 73. All these results were computed with v, = 1/3,
and initial residual stress is not included.
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FIG. 72. Phase of loading of interface crack tip for several levels of elastic mismatch for a
blister under point load.
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FIG. 73. Deflection-load relation for a blister under point load.

VIII. Failure Modes of Brittle Adhesive Joints and Sandwich Layers

This final section focuses down to a finer scale than has hitherto been
addressed in most of this chapter. Attention is directed to modes of crack-
ing of a thin, brittle adhesive layer joining two identical bulk solids. The
discussion also has bearing on sandwich specimens, such as those discussed
in Section IV.C, which are designed to measure toughness of the interface
between the thin layer material and the adjoining material comprising the
bulk of the specimen. Figure 74 shows one such sandwich specimen. Below
it, at higher magnification, are depicted some of the multitude of cracking
morphologies that have been observed in brittle systems. A test series
carried out using any such sandwich specimen provides the macroscopic, or
effective, interface toughness function r(w) characterizing the joint. In
assessing the effectiveness of a joint or in making engineering applications,
one need not necessarily be concerned with the local cracking morphology.
On the other hand, 1r(y) itself may be a strong function of the cracking
morphology, and, if so, it is essential to understand what controls the local
cracking morphology in any attempt to improve the quality of the joint.
Similarly, attempts to measure the interface toughness [(v') between two
materials using a sandwich specimen can be defeated by tendencies for an
interface crack to misbehave in one of the other modes of cracking.
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PlG. 74. Modes of cracking in a thin, brittle adhesive layer: (a) straight crack within layer;
(b) interface crack; (c) alternating crack; (d) wavy crack.

This section addresses some of the many issues surrounding local cracking
morphology. The discussion is restricted to brittle systems for which any
inelastic behavior occurs on a scale that is small compared with the layer
thickness h. The layer thickness is assumed to be very small compared with
the in-plane dimensions of the joint or of the sandwich specimen. At the
macroscopic level, the tip of a crack along the joint or layer is characterized
by macroscopic, or applied, stress intensity factors K' and K•. As
discussed in Section IV, these are determined from a standard analysis that
ignores the existence of the thin layer. The macroscopic energy release rate is

G= '(K,-2 + K1
2), (8.1)

where the numbering for the materials is shown in Fig. 74. The effective
toughness function of the joint as determined in a test is identified with the
critical value of the overall energy release rate at crack advance according to

l( == (8.2)

where y= = tan-'(K*'/K*).
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A. BASIC RESULTS FOR STRAIGHT CRACK:

1. Straight Crack within the Layer (Fig. 74a)

A simple energy argument or application of the J-integral establishes the
equality of G' and the local energy release rate at the tip, G. With K, and
K11 as the local stress intensity factors, G = Ej-(K2 + KfA). The condition
G = G', together with (8.1) and linearity in the relation between stresses,
allows one to write the connection between the local and applied stress
intensity factors such as

( ,1 - O 1/2• , io /h ,•

(K1 + iK11) = + )"2 (K- + iKiIebc ) (8.3)

Here, = - y/' is the shift in the phase angle between the local and
applied intensities. Fleck et al. (1991) have carried out calculations for 0;
they give the approximation

s= ,Inh -1) + 2¼h c )(ofi,, (8.4)

where ý is plotted in Fig. 75. This result is unaffected by the presence of a
residual stress al I aR in the layer.

If the macroscopic specimen is loaded in mode I (K• = 0) and if the
crack does propagate down the centerline of the layer (cf. discussion in next
subsection), then (8.3) gives K11  0 and

1-ý \1/2 *

K1 = + Ki. (8.5)

-1 0 (X 1

03-a/4 P-Ca/4

.100

FIG. 75. Phase factor •(a, /•) in (8.4).
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This result, which was obtained originally by Wang et al. (1978), reveals
that a crack within a compliant layer (a > 0) is shielded. With KI, as the

intensity toughness of the layer material, the apparent toughness measured

using the sandwich specimen is

K't=\ oýKc (8.6)

An equivalent statement concerning the elastic shielding is that the load
needed to fracture the sandwich specimen differs from that needed to frac-
ture a geometrically similar specimen made entirely from the layer material
by the factor [(I + o)/(l - oe)1J" 2 . This factor can be quite large when a
stiff material is joined by a compliant adhesive, as is the case when, for

example, metal of ceramic parts are joined by a polymer adhesive. If the
strength of a joint is controlled by crack-like flaws that are on the order of
the adhesive thickness or somewhat larger, then this same magnification

factor will apply to the strength of the joint compared to the strength of the
bulk adhesive with flaws of similar size. If the controlling flaws are much
smaller than the layer thickness, the magnification effect is lost.

3. Crack along the Interface (Fig. 74b)

The relation G' = G also holds for this case, where G is related to the
interfacial stress intensity factors K, and K 2 by (2.29). The equation relating

K, and K2 to Kj'*and K0 is (3.38) with KI = K1 and K11 - KI'I. With V for
the tip on the interface defined by (2.45) with I = h, the co-quantity in (3.38)
is V - Vu/. This shift in phase is generally small and even for the largest
elastic mismatches never more than about 15'.

As discussed in Section IV.C, sandwich specimens are attractive for
measuring interface toughness. Assuming the crack does advance in the

interface, the equation for the interfaces toughness function is simply

r(m ,/= h) = r(V',), (8.7)

where Y/= Y/' + w. Conversion of F(V, h) to F(0, l) where 0, is defined

using a material-based length i is readily carried out as specified by (2.51).

B. CRACK TRAPPING IN A COMPLIANT LAYER UNDER NONZERO K'

Equation (8.3) predicts a strong trapping effect due to elastic mismatch

betweeni the layer and the adjoining blocks. When K, is not too large
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FIG. 76. Location of trapped crack in a compliant sandwich layer.

compared to K', (8.3) reveals the existence of a straight, mode I crack path
within the layer. The condition for K 1 = 0 from (8.3) gives the relation
between the location of the crack, c/h, and Vt'J as

0(c/h, , fl) = - y**. (8.8)

Since 0 vanishes when the elastic mismatch vanishes, there can be no
straight crack paths within the layer unless V' = 0 under this circumstance.
A plot of the solution to (8.8) is shown in Fig. 76 for several levels of
mismatch, all with fl = a/ 4 . When there is significant mismatch, a mode I
path well within the layer can exist for JKj•{ as large as 1007o of K1'. Such
paths exist whether the layer is compliant or stiff, but generally a straight crack
in a stiff layer will be configurationally unstable, as will now be discussed.

C. CONFIGURATIONAL STABILITY OF A STRAIGHT CRACK

WITHIN THE LAYER

Given the existence of a straight mode I path within the layer, the issue
now addressed is whether the path will be insensitive to small perturbations,
returning to the straight trajectory, or will be deflected into the interface or
possibly into a wavy morphology. Consider a loading with K' = 0 sach
that the center line through the layer is a mode I crack trajectory. Two
results are presented that indicate whether or not the centerline path is
configurationally stable.

First, suppose at the start of propagation the crack lies off the centerline
(i.e., c/h • 1/2 in Fig. 74a). From (8.3), with K'* = 0,

KI, = [(I - a)/(l - a)]'"2 sin d K'. (8.9)
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The offset crack will kink toward the centerline if K11 > 0 when c/ih > 1/2,
and if K11 < 0 when cih < 1/2. The function P given by (8.4) is odd with
respect to the centerline at c/h = 1/2. For a compliant layer (a > 0) with

! = a/ 4 , 0 is positive when c/h > 1/2, implying by (8.9) that the crack will
kink toward the centerline. By contrast, when the layer is stiff (a < 0), o is
negative when c/h > 1/2 and the crack will kink away from the centerline.
A compliant layer with /8 = 0 has a small negative o when c/h > 1/2 and
would also cause the offset crack to kink away from the centerline. This
particular test of configurational stability requires both a and ,6 be positive.
This same test has been used in Section III.B.l.b for the double cantilever
beam, and in Section V.C.2.a for substrate spalling driven by residual
tension in the film.

Another insight is provided by the condition for stability of a straight,
mode I crack path to small perturbations derived by Cotterell and Rice
(1980). Their necessary condition for straight cracking is T < 0, where T is
the second-order term in the crack tip expansion (2.1). Fleck et al. (1991)
have solved for T for the crack problem of Fig. 74a. For the centerline
crack (c/h = 1/2) under K' = 0, they give

T= [(I - a)/(1 + a)]JT* + aR + c1(a, fl)K*h- 2  (8.10)

Here, T' is the T-stress for the homogeneous specimen in the absence of the
layer, aR is the residual stress in the layer acting parallel to the centerline,
and cl is tabulated by Fleck et al. and presented here in Fig. 77. Residual
compression parallel to the crack plane contributes to stability, as does a
compliant mismatch of the layer relative to the rest of the specimen through
the last term in (8.10). The last term in (8.10) is destablizing when the film
is stiff. Note that the residual stress CR has no effect on the existence of a
mode I path in the layer, just on its stability.

When there is significant elastic mismatch, the first term in (8.10) will
usually be insignificant compared to the third term, since T' is typically on
the order of KI'L- 2 , where L is a length characterizing an overall dimen-
sion of the specimen, which is assumed to be large compared to h. When
this is the case, the T-stress at fracture is

T=_ CR + (1I + ay)/( - a)]"12cK,,h-'12 , (8.11)

where, by (8.6), K1c is the intensity toughness of the layer material. The
requirement T < 0 will always be met for a compliant layer supporting a
compressive (or zero) residual stress. When the residual stress is tensile, the
sign of T depends on which of the preceding terms is larger. Note that the
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FIG. 77. Coefficient c, in (8.10).

second term in (8.11), which is always negative for a compliant layer,
increases in magnitude as the layer thickness diminishes.

A number of examples of sandwich systems that have been reported to
exhibit straight in-layer cracking are discussed by Fleck et al. (1991), and
two of these will be remarked on in what follows. To emphasize the
significance of this effect, one can point to the symmetrically loaded,
double cantilever beam specimen, which is notoriously unstable in the
absence of a layer due to the fact that T' > 0. Because of the stabilizing
influence of a thin compliant layer, the specimen can be used successfully to
measure the toughness of a material in a sandwich layer.

D. INTERFACE OR IN-LAYER CRACKING?

Two sets of toughness data taken using sandwich specimens are shown in
Fig. 78. Indicated for each data point is whether the crack propagated along
the interface or within the interior of the layer. Thouless's (1990b) data, for
a brittle wax layer joining silica glass, is presented as a function of the
applied phase angle of loading y/'. Only for V/* = 0 did the crack propagate
within the brittle wax layer. The toughness of the wax was about one half
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FIG. 78. a) Data of Thouless (1990b) for brittle wax layer sandwiched between glass
substrates. b) Data of Wang and Suo (1990) for an epoxy layer between steel substrates.

that of the interface for near-mode-I fracture. The data of Wang and Suo
(1990) for an epoxy adhesive layer joining two halves of a steel Brazil nut
shows instances of in-layer propagation for f1,j-values as large as about 10°.
Moreover, the epoxy is significantly tougher than the interface at low values
of 0,, and the in-layer path involves substantially higher energy dissipation
and applied load than the interface path. Nevertheless, a number of speci-
mens did exhibit in-layer propagation. This preference for a high energy
path over a low energy path in close proximity highlights the importance of
understanding the mechanics of crack path selection. It remains an open
question as to why a path down the interface was not selected, especially
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since Wang and Suo started their cracks on the interface and observed a

small amount of interface crack growth prior to the crack kinking into the
interior of the layer. Condition (2.65) for kinking out of the interface,

including the influence of the ?,-contribution, does not appear to be satisfied.
This is the feature of the behavior that remains to be explained.

Both sandwich systems in Fig. 78 have a highly compliant layer, and both
systems have a tensile residual stress rR in the layer. But in each case the second
term in (8.11) is at least twice as large in magnitude as 0 R (cf. Fleck et al.,
1991, for complete details). Thus, the mode I specimens have a distinctly
negative T-stress, and straight cracking within the layer is consistent with the
stability theory. By contrast, the plexiglass/epoxy sandwich system of Fig. 9
has relatively small elastic mismatch and a positive T-stress under mode I
loading. For this system, the crack always followed one of the two interfaces.

For values of JV'J outside the range of possible trapping of the crack
within the layer (e.g., IvI greater than 0° to 10', depending on the

mismatch), the crack will be driven toward one interface or the other-
toward the lower interface if y/' > 0 and toward the upper if y/0 < 0. If
material #1 is sufficiently tough to resist any attempts for the interface
crack to kink into it, the crack will follow the interface and the test will
generate the interface toughness according to (8.7). This is the case for both
sets of test data presented in Fig. 78, other than those data points mentioned
in the preceding. Various micro-morphologies of interface fracture have
been observed, some of which have been discussed by Evans et al. (1989).
If the interface toughness is low compared with that of both materials # 1
and #2, then the crack will tend to follow the interface fairly cleanly. If,
however, the interface toughness is comparable to that of the layer material,
then the interface crack will interact with flaws in the layer adjacent to the
interface, and nucleate microcracks. The effect of the mixed mode loading
is to grow these microcracks back towards the interface. The resulting
fracture surface will be covered with tiny chunks of the layer material.

Additional discussion of the micro-morphology of interface fracture is
given by Chai (1988), Wang and Suo (1990), and by several authors in the
volume on metal-ceramic interfaces (Riuhle et al., 1990).

E. ALTERNATING MORPHOLOGY (Fig. 74c)

In the alternating mode of cracking of Fig. 74c, the crack switches back
and forth between interfaces with a fairly regular interval, which is typically
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several times the layer thickness. The mode has been reported in matrix
layers between plies of a composite when the loading is nominally mode 1,
and it has been fully documented for mode I loading of an aluminum.
epoxy/aluminum sandwich specimen by Chai (1987). Chai used a heat
setting epoxy, which gives rise to a relatively high residual tensile stress in
the layer (aR = 60 MPa), which is more than twice the magnitude of the
second term in the T-stress in (8.11) (cf. Fleck et al., 1991). Thus, Chai's
system has a strongly positive T-stress and is not expected to display straight
cracking within the layer.

Akisanya and Fleck (1990) have carried out a quantitative analysis of the
alternating mode of cracking with specific attention to the aluminum/
epoxy system. Central to the phenomenon is the variation in the proportion
of mode 2 to mode 1 of the interface crack as it propagates from the point
where it first joins the interface in any given cycle, i.e., at c = 0 in Fig. 79.
The trends of the variation in V/ found by Akisanya and Fleck are sketched
in Fig. 79, where Vt is defined by (2.45) with I = h. When aR = 0, V rapidly
approaches the limiting value given by (3.38) with KIn KcO = 0, i.e.,
y/= wv. (For the aluminum/epoxy sandwich, a = 0.93, f8 = 0.22, e =
-0.07 and co -15'.) However, when aRVhI/KI' is on the order of unity,

C/h
0 2 4 6 8

=FR 0

"-450

.900 L

FIG. 79. Sketch of trends of phase of loading at interface crack tip for various levels of
residual tension ak in the layer. The remote loading is mode 1.
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which is the case for the Chai specimen, the interface crack starts with a
large component of mode 2, which then diminishes to the value ,/ = c as
c/h increases. The large negative mode 2 component forces the crack to
remain in the interface, since it cannot penetrate the aluminum. Only when
c/h has increased to the point where the magnitude of V is sufficiently low
does kinking down into the layer become possible. With the aid of the
kinking analysis of Section II.C.5, the value of c/h was determined at which
a mode I kink crack is possible. For the aluminum/epoxy system of Chai,
Akisanya and Fleck found that the kinking condition is met when c/h
reaches a value of about 2, in agreement with the intervals observed by Chai.

F. TUNNELING CRACKS

An example illustrating the ability of a crack in a brittle adhesive layer to
tunnel through the layer was given in Section III.A. 1. If the layer material
is sufficiently less tough that the interface and the adjoining material,
cracking will be confined to the layer as depicted in Fig. 16. Steady-state
tunneling results are useful because they provide fail-safe limits on stress
levels (or on layer thicknesses) such that extensive cracking can be avoided.
The particular example of Section III.A. 1 reveals that an initial crack-like
flaw whose greatest dimension is equal to the layer thickness (e.g., a penny-
shaped crack) will initiate growth at a stress that is only about 1007o higher
than the steady-state tunneling stress. For many systems where the flaw size
is on the order of the layer thickness, the tunneling results should provide
realistic upper limits. When the flaw size is much smaller, the stress to
initiate crack growth is much higher than that predicted by the steady-state
tunneling limit, and the transient tunneling process is then highly unstable.

Several steady-state tunneling results for layers are presented in this
section. The results and their potential applications have a close resemblance
to the results for thin-film cracking in Section V.B.

1. Isolated Tunneling Crack

As previously emphasized, the energy released, hG5 s, per unit length of
steady-state propagation of a tunneling crack is precisely the energy released
by a plane strain crack extended across the layer. Calculations have been
performed for Gs. by Ho and Suo (1990) for finite thickness sandwiches, as
specified in the insert in Fig. 80. In Fig. 80, a denotes the uniform tensile
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FIa. 80. Steady-state energy release rate for isolated tunneling crack. The crack extends
from interface to interface, and is propagating in the direction perpendicular to the cross-
section shown.

stress within the central layer prior to introduction of the crack. That stress
may be due to a load applied to the sandwich or it may be a self-equilibrated
residual stress. Curves of the nondimensional G,, are shown as a function
of the elastic mismatch parameter a with 8 = a/4 for various values of
layer thi':kness to total thickness, h/w. As long as the central layer is not too
stiff compared to the adjoining layers, the results for hiw = 0.1 are close to
the limiting case hiw = 0. For example, for ca = 0, the normalized G,, is
0.788 foi niw = 0.1 and 0.785 for hiw = 0. Observe that a relatively com-
pliant substrate (i.e., small E, and/or w/h) provides less constraint, inducing
higher driving force. It is likely, for the same reason, that higher driving
force will be induced by crack-induced plasticity in the substrates, by inter-
face debonding, or by any other source of constraint loss. These effects
have been noted in thin film channeling by Hu and Evans (1989).

2. Multiple Tunneling Cracks

The approach to multiple cracking pursued here is identical to that
presented in Section V.B.3 for thin films under residual tension. The reader
is referred to that section for a more complete discussion of the derivations
underlying the results. Here, consideration will be limited to a layer of thick-
ness h sandwiched between two infinitely thick blocks. Elastic mismatch



184 J. IW". Hutchinson and Z. Suo

(Th h-____ C ;

0.6

f(h LU

04

0.21
0 0.2 04 06 0.6

h/L

FIG. 81. Steady-state tunneling cracks with unhiorm spacing, in the absence of elastic
mismatch. The cracks extend from interface to interface.
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FiG. 82. Relation between tunnel crack density and residual stress in the layer in the
absence of elastic mismatch The curve is obtained from (8.14) with G, = -c.
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between the layer and the adjoining blocks is neglected (a = = 0). The
stress in the iaver in the absence of the cracks is a, which may be due to
applied load or a residual stress.

First, consider an infinite set of cracks periodically spaced a distance
apart as in Fig. 81. If these cracks are equally extended in the tunneling
direction,

G =f(h/L). (8.12)

The function f(x), which can be evaluated using results from Tada el al.
(1985), is plotted in Fig. 81. For h/L -- 0, f = 0.785 and (8.12) reduces

to (3.1).
Next, consider the situation in Fig. 82 where one set of cracks spaced a

distance 2L apart has already tunneled across the layer, and where a second
set bisecting the first set is in the process of tunneling across the layer. The
steady-state energy release rate for the cracks in the process of tunneling is

EG "2h = 2f(h/L) - f(½h/L). (8.13)

Imagine a process in which a is monotonically increased, as in application
of an overall load or stressing due to temperature change with thermal
"expansion mismatch. Under the assumption that new cracks will be
nucleated half-way between cracks that have already formed and tunneled,
the preceding equation gives the relation between a and the crack spacing
h/L. With G., identified with the mode I toughness of the layer material
Fr, (8.13) provides the desired relationship, which is plotted in Fig. 82. The
"threshold corresponds to the lowest stress at which steady-state tunneling
can occur, i.e., for h/L -- 0,

o[h/(EF¢)]/ 2 = 1.128. (8.14)

The effect of elastic mismatch on this threshold level can be determined
using the results for the isolated tunneling crack.

3. Lateral Tunneling of a Kinked Crack

Tunneling appears to be a prevalent mode of cracking in layered
materials. When the brittle layer is thin and the flaw size is comparable to
the layer thickness, the cracks can be readily nucleated. A variety of
applications of these ideas can be found in Ho and Suo (1990) and Ye and
Suo (1990). Here, we give one more example to show the versatility.
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3D local kink crack lateral spreading of kink
crack by tunneling

plane strain problem
for kink crack

FIG. 83. Spread of a local kink by tunneling. Top left: 3-D local kink crack; top right:
lateral spreading of kink crack by tunneling; bottom: plane strain problem for kink crack.

Because it has relevance to the ability of an interface crack to nucleate a
kink into the adjoining layer, we mention in passing application of the
tunneling concept to crack kinking. Suppose the parent interface crack
depicted in Fig. 83 encounters a local, three-dimensional flaw that is capable
of nucleating kinking. Consider the process in which the kinked segment of
crack "tunnels" laterally along the interface crack front. Formally, this
tunneling process can be treated as a steady-state process. The average
energy release rate at the laterally spreading crack front can be evaluated
using the energy released in the plane strain problem, just as in the previous
examples. To simplify the discussion, assume #i = 0 and q = 0, where rl is
given by (2.63). Since the energy release rate for the plane strain problem
for a small kink is independent of kink crack length (cf. Section II.C.5), it
follows that the average energy release rate fur lateral tunneling along the
interface crack front is equal to the plane strain energy release rate.
Consequently, there is no barrier to the lateral spread of a locally nucleated
kink. This observation may help to explain why crack kinking often appears
to occur simultaneously along a more-or-less straight segment of crack front.
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Crazing of laminates

Jean LEMAITRE **. Frederick A. LECKIE * and Do% SHERMAN *

ABSTRACt. - The main features of the behavior of a brittle-ductil. itpe of lani•n;iie, are dericd ironi a
one-dimensional study which emphasizes the mechanismn ofl cracking-debonding. The an,•i%., i,, ba,,cd upon a
shear lag model and the experiments are performed on an alumna-craphitc expo\, laminatr The ýequenc¢ of
cracking-debondings giving rise to crazes is pointed out with a limiting value of the crack spacing due to a
debonding length found to he of the same order of magnitude a- the thickne,,, of the lajer', The reduction of
stiffness due to crazes is aim, alculated. measured and used to find the homocenized beha'tor of the laminate
as an elastic damaged material.

1. Introduction

The laminates considered in this study are made of alternative layers of brittle and
ductile thin sheets. This system is a compromise which benefits from the high strength
of brittle materials such as ceramics but avoids brittle failure by providing toughness
[Evans, 1990]. [Lange, Marshall & Folsom. 1990]. For high temperature use laminates
consisting of alumina and Inconel bonded by a diffusion process could conceivably result
in high strength tough materials with good creep resistance properties. It is not difficult
to visualize other combinations which would provide the properties dictated by different
design requirements. It is likely that a wide range of properties can be predicted by a
generic mechanics which describes the underlying mechanisms and the purpose of this
study is to understand and model the mechanisms of failure by cracking and debonding
as a function of the laminate parameters. As a consequence. several simplified hypotheses
are introduced to obtain analytical results which have to be considered as qualitative. In
particular. the sequence of debonding and cracking. the length of debonding. the limit
of the crack spacing. the reduction of stiffness may be described using the one-dimensional
problem described in this study. The crack growth in two dimensions is studied in a
later report.

Many investigators have used shear lag models to study the transverse matrix cracking
in cross-ply laminates [Garrett & Bailey. 1977]. [Parvizi & Bailey. 1978]. [Bailey. Curtis
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& Parxiii. 19"9)• based on the earlx work of [Cox. 1952] and on a deterministi.i location
of the cracks. Latter on several ý%orks appear introducing statistic, in the location of the
cracks either b\ a Weibull strength distribution [Manders ci al.. I 9S3]. [Fukunaga ci at..
19841 or b\ a distribution of inittal flavw sizes [Wang & Crossman. I,,Mil or b\ i
probability densit\ function associated \%ith the transverse cracking [La•ms & D-orak.
1988]. The present work mainly emphasizes the effects of debonding. general order of
magnitude of debonding length and limniting crack spacing and some practical consider-
ations helpful in the design of laminates.

2. Basic one-dimensional pi'blem

The debond lengths and cracking spacing are governed bý the state of stress in the
interface and in the brittle layer. To determine the crack spacing let us consider the one-
dimensional case of two layers for which B brittle and D ductile, The portion of the
laminate between two adjacent cracks is shown in Figure 1,

L L

Fig I. Laminate and its basic cell.

The geometrical and material properties used in this work are the following.

Brittlc Ductile
material matenal Interface

Thickness ................ . 2 h, 2 1i1 0
Length .. ........... ........... 2 L 2 L 2 L
Linear elasticiy:

Young's modulus ......... ... E E G, shear modulus

Brittle failure or debonding:
Strain energy density release rate .......... y s

Perfect plasticity

Y ield stress .. . . . . . . . . . . . . . . . . . . ..

The laminate is supposed to be free of any initial residual stresses.
Three convenient groups of parameters are defined:

E,-=Eh-Eh such that o', = E, r,.
h, + it,

h (21hn/hDE ED)E I which is of the order of magnitude of the laver thickness 2 h,
\J oGiEr.(" i
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k = ( IEl \N hich is of tile order of unit\.,E, h, ED

The loadine consists of a farfield tensile stress 7,. The stresse, inc- i the brittle
material. ry', in the ductile material and ai,, in the interface max he determined a,
functions of the coordinate x1 using the socalled Shear Lag Theory developed on the
basis of three hypothesis which are nox, discussed.

HI KINEMATIC HYPOTHESIS

The displacement ui in B and D is linear in x3 for -h< N, < - h,. Let us call:

,,i(_,-, ,,, .v h ) LI- '

-D
uLI(. ,)= 11  (.v,... = - h,). El _

Lill (hi + x ) + Lil (hil - x.J)uI (xl. V3) = I D ID

h,+h,

H2 APPROXIMATION

The displacement u3 does not depend upon x,. This allows us to calculate the shear
strain at the interface

2 \x3 -X-/ 2 hi, + hD

and the shear stress ri,3 from the law of elasticity cra=2Gigci_ from which

H3 ONE DIMENSIONAL PROBLEM

The stresses induced by the mismatch of the contractions of the two layers are neglected
so that the only non-stress component is a"o D.

This allows us to replace the strains by the stresses through the la%% of elasticitN

II D

da~~~~3 C I l(¶ 1 _A

Eli ED

d' GiI

dx I hr +ill,, E, ED

INROPL&kN JOLRNAL Of MECHANICS A SOLIDS %OL I1. v 3. 1992
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This is the first stress equation for the three unknowns: •. o .o The others are
calculated using the equilibrium conditions (Fin. 2).

MIT-

- -
D
da.d

Fig. 2. - Equilibrium of thc layers.

They' involve integrals of stresses over the thickness but since ul is linear with .N.. E,
and a, are also linear so that

f02 01 (V3) d.V3 = 2 h. crR,,. f- 2 hDC7 1 s) d-V3 = It, ,{ ,,(. 3 dO=h ', 12

From consideration of equilibrium of each of the layers:

2hdyC-- 3 =0-dx1

21d + 13=0
dx,

whilst overall equilibrium of the system in the x direction gives

An equation in a' , may be obtained from the differential equation ir a' in which
expressions for or, and c~ 31cex, are taken from the equilibrium equations to give

dat _ a", Ea =0
dx2 b-2 E b-2

where the parameters E. and b were defined earlier.
The solution of the differential equation is:

h ho~a=Aiexp(Zi+Aaexp(- xi) E,""

The boundary conditions:

x,= L a,= 0 because of the twoend cracks.

. =0 --- ,0 = 0 from the symmetry condition

EUROPEA. JOURNAL OF ME(HANICS A SOLIDS. VOL 11. N- 3. 1992
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give the solution

• sinh 1 h
cosh L h

E (I cosh )
1 1 'E 1 '\ cosh L h

hD

where k is the parameter defined in the matrix. The stress distributions are plotted in
the dimensionless form shown in Figure 3.

at -

(h)i

I.

6.-.

r 1

o 10

EURPEA JORA OF MECHANICS • , A SOLID. VOL 11 N- 3. )992I,. • ,1

0 .2 4' 6 .6 0 2 4 6 8

(al (h)

2"6r F ' I

2.52F .

- ~ l0••[, .• 0 2 i "S- Ih 1

Fig. 3. - Stress dioiribution in the basic larninaic cel1.

These curves give the classical results of a shear lag analysis that is the basis of the
mechanism of debonding and cracking of the laminate.

EU.ROPEANl JOURN•AL OF MECHANIC•S A SOLIDS. VOL. I , N" 3. 1992
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It is the length .v* of the edge effect in wAhich the stresse,; stronclk increase or decrease
is very small .Y* L- I00,,.

The stress gradient is very large in that region which model,k the stress sinuularit\

w\hich occur in the exact solution.

3. Mechanism of damage by crazing

3. 1. DESCRIPTION OF THE DEBOND1NG-CRACKING MECHANISM

Consider a monotonic increase of the applied stress a, from the curves of" Figure 3.
and assuming at first that no plastic yielding occurs in the ductile layer, the first exent
to occur is a debonding of the interface at the two edges in the vicinity of Nx , = L. The
condition for debonding is Y'>Y'__

From damage mechanics, the strain energy release rate density Y is the variable
associated with the damage variable D defined as the surface density of debonding. If
linear elasticity is coupled to damage then Y is derived from the elastic strain energy
density w, as [Lemaitre & Chaboche. 1990]

- 2

Y= - - in pure tension and Y = - in pure shear.
FID 2E 2G

The length of debonding /, is defined by the set of x, where

or cr (E )2 T forconvenience.
X+-i_ > or (, Y+Vi. =

This criterion assumes that the length at which the debonding stops is given b\ a static
calculation based upon the elastic stress distribution some what similar to that used to
define the process zone size at the front of a crack in small scale yelding. Kinetic and
dynamic effects, blunting at the tip of the debonding zone are not taken into account.

Taking the expression of c. as a function of x, gives

sinh = cosh" L h

The approximation for L,/h> I then gi -s ,-: hLn(k(k , ( t,)).

t.I ROPLA.\N JO0 RN- \t Of- N1V(CH•AN( '\ \tK • Il)' ',.') It I 31 1992
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Numerical applications to practical cases show that the ratio -,. 2 to 3. Then, I1
is of the order of b. which is the order of magnitude of the layer thickness 2 h. This i-

the first important qualit-,ive result sho"n in Figure 4. I1 - 2h.

L- L

Fig. 4. - Debondwg cracking mechanism.

Referring to Figure 4 we may consider that after these two debondings and with zcro

friction in the debonded zones, the effective length to be considered in the stress equation
is no longer L but L - 1. In particular in the brittle layer

This result shows that to support the same applied stress a,• the magnitude a", should
increase due to the decrease of the characteristic length from L to (L-/,). If so or for
an increase of cr, its maximum value upon x., that is for x, =0 may reach the condition
for brittle failure: Y' = Y•.

In pure tension: y' = (a', )2t2 EB.

Then the brittle failure occurs when a, = (2 EB Ya)2  =a (for convenience I which
corresponds to the applied stress derived from the expression of Y with x, = 0

am=E 
- I______

(• E cosh ((L -/11).'b

As the crack appears it induces a free edge condition at r, =0(' 1 (x• =-0)=0) which
produces the quasi-singularity of the shear stress in the interface and the condition for
immediate debonding (Fig. 4)

ai >- T' --, debonding for - /, < x < 1.

3.2. SEQUENCE OF DEBONDINGS-CRACKINGS

As the external applied stress a, continues to increase, the length of the previous
debondings increases unt,. the condition of a new cracking is reached.

This sequence of debonding and cracking mechanisms repeats itself as Y, increases
with a cell length divided by two at each new crack formation and diminished b% 2/, at

LtROPLAN JOLRNAL OF MECHANICS. A ,OLIDS. VOL 11. %- 3. 1992
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~1LL:

Fig. 5. - Sectnld de'onilný-crt nlckhi anne nitni

each debonding (Fig. 5). We nok calculate the condition of the second debonding-
cracking sequence.

The same formula applied either for debonding or cracking except that the length of
half the basic cell is nom (L - 2/1, 2.

Then the length 1, of the four additional debonded regions is defined b'.

,ih L -2 11  1____1______I(L21 I) T cosh((L-2I,2h)2in h- k

which shows that for (L-211)2h > I

I/=-:Ln\ =:,

Then each new debonding may be considered to have approximately the same length:

The external applied stress to cause the second debonding is

Eft • cosh(((L-211 ).2,6)-(02 h)

Using this result it is now possible to extrapolate for ni successive mecachnisms of
debondings-cracking inducing n cracks in the following steps where the approximation

/i / has been made

Several interesting qualitative results may be observed from this sequence of the
debonding-cracking damaging process.

- The crack spacing and the crack density are plotted against the apr'icd stress
(Figs. 6. 7). The crack spacing and crack density are normalized by the parameter
b(h=2h) and the stress o, by the ratio E, o"'E. The results do not depend upon the
gometrical aspect ratio 2 L h. Then these curves can be used as master curves for manN
applications.

- The number of cracks increases ver) rapidly with the applied stress a, and the
crack spacing decreases ver\ rapidly and approaches saturation. These observations have
been pointed out in several experimental studies [Crossman et al.. 1980I. The practical
limit reached in Figure 6 is 2 L (n- l)hz3 which corresponds to a crack spacing limit
of the order of 2b: 2 L,(n- l)=-3h which is about twice the thickness of the layer when
the layers are of the same size. Otherwise 2L (7- I)=- 3 (2h 0•o ED GiE, )' ' which is

ILROPI A, Jot RNM Of IrF-HANR S A•iOLIl)S oL 11 -L % 3. 199-2
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Applied

cun'lukitive

Mechanism E, debonding (rack C rack

number F length densii1 1pic.1 lg

01l 2 L 2 L

I - cosh -
(I -b 41 2L 2L

I - 'co sh L - /-- -
L

2 2 h ]12/ 'L 2

F - 2L-3.2.-441- 2. 1 L
Di [I~~~cosh. "1' JJ 2-iL

2 L - O- ?)1)- 2 2L
or expressed as I - (cus 4 -t,,- 2)? 2L n-I

Function of the number of

cracks

z .:8 S.4S

L z

0.20

*.So
_.,Stg./ E. Stg,* ES. S E._ S.

Fig. 6. - Crack spacing. Fig, 7, - Crack denstiv

in accordance with experimental results of [Highsmith & Reifsnider. 1982] and [Wang.
19841. Notice that the theories which to not take debonding into account cannot predict
this limiting crack spacing.

3.3. EXPERIMENTAL STUDY

Experiments have been performed on a laminate composite made of two brittle layers

of Alumina AI,0 3 bounded by the epoxy of a -ductile" layer of Carbon fiber-epoxy

I t, ROPEAN JOURNAL OF MICHANICS. A SOLIDS VOL I1 'N 3, 1992
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composite having the fibers in the longitudinal direction of the tensile specimen shown
in Figure 8 which also gives the properties of the two materials.

Alumina Carbon fibers-expoxý

2 hB=0.635mm 2,T=O.37mm

E, = 303.000 MPa E, = 115.000 MPa

cry= 193 MPa ci,= 1.710 MPa

Interface (epoxy)

Gij2.000 MPa

T' .,30MPa

6

A-A

127 R-.

Fig. 8. - One-dimensional laminate specimen.

The processing consists in a hot pressing of the ceramic and carbon fibers epoxy plies
at a pre3sure of 0.350 MPa and a temperature of 135'C for 90 min. Due to the thermal
expansion mismatch between the two materials, residual stresses develop during cooling.
They have not been taken into consideration in the present study but a method to
iniroduce such initial residual stresses in the analysis is developed in [L & D, 19881.

A monotonic loading is applied and the sequence of cracking is recorded.

The formation of cracks does not occur exactly at mid distance of two existing cracks
(nature is not as perfect as the equation!) but appears randomly along the specimen as
shown by the sequences of cracking in Figure 9 which shows also the corresponding
stress-strain curve and evolution of the number of cracks. However the final pattern is
close to the one predicted. Notice that some crack branching occur which are not
considered in the theory.

The elementary debonding length when a crack appears is by observation 0.5 </< 2 mm.

The prediction is

1-2tb2 Ihh,,: I ramm.

EUROPE RNAL OF MECHANICS. A SOLIDS VOL II. N• 3. 1992
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(u)

30.

20.

m• i.

C-e.m. -I 0
a.m e .*. e2rs 0m 100 Zo0 ,00 Hp.+Stire n (X)

l - - Crazeý on lraniinat,,P w. correspondilm sr'-'.trdhJ1 cur~c (b) and numt"r o(' cracks 1 1.

At saturation. the crack densitv, the crack spacing and the cumulati\e debondin.
estimated as average Nalues of measurements from 3 experiments arc:

- crack density: "-0.5 mm- I.

- crack spacing average: 2 mm.

rI- OPIPF % I 0) R%-' OF 'IF F" "\\I(S% A SOLID|1 \0)[ I I 3. 092
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The corresponding predicted values calculated with h= I are respectivel. 0.33mm-

and 3 mm. The correlation is satisfactorý enough if we consider that the residual stre•.•Ce

induced by the processing of the Laminate are not taken into account in the theory.

4. Limit load by plasticity in the ductile layer

Crazes continue to develop on the brittle layer until the steady state is reached and

the ductile layer may yield when the stress ;Dais equal to the yield stress cy. Then from

the formulas of Section 2

-D hCr 0. + yý = crD or =c'I

For that value of the applied stress the laminate behaves as a perfectly plastic material
until damage develops in the ductile layer to reach ultimate fracture.

5. Reduction of stiffness

An important effect of crazing is the reduction of the stiffness of the laminate. The

stiffness reduction is not due to the cracks but to the debondings which roughly speaking

unload the brittle layer over a length 21 at each crack (Fig. 10).

D ,1 '26

SL E,-

Fig. 10. - Stiffness of a damaged laminate.

Consider one cell whose length is the crack spacing 2 L/(n - 1) {n being the number of

cracks in a length 2L) containing one crack at x, =0. The stiffness of that cell is the

stiffness of the ductile layer over a length 2 Li(n - 1) in Parallel with two stiffnesses of
the brittle layer over the lengths - (L;(n - 1)) <x, < - / and 1< x < L/(n- i).

If E is the elastic modulus of the cell:

E, 2 hD +E 2 hi, + (, 2h, _______)

r:= E.

I + -lMn- I)!LI)(E h/!ErD/o")

EUROPEAN JOURNAL OF MECHANICS A SOLIDS. VOL I I N" 3. 1992
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For man% cells in series. E is also the elastic modulus of the liminaic

A practical order of magnitude for the modulus is E= E, 2 Ahich is reported b%
fHashin, 1986) and [Hjghsrnith et a1. 1982J. This value is obtained "hen considering the
steadx-state limitine case

__2 L -2 with h:2hzl
(n- I)h then t= _

together with h I
ED hr,

The evolution of the damaged elastic modulus • as a function of the crack density is
compared with experiments of section 3.3 in Figure I I and comparison is quite good.

E

1

O.5 'Prwdic h'o•

n

0 0o.1 0a " o 0.4

Fig. II - Damaged claslic modulus.

6. Homogeniztion

Having the expression of the elastic modulus of the laminate as a function of the
number of cracks (which is a known function of the applied stress C, ). it is straightfor-
ward to derive the constitutive equation of the equivalent continuous material having its
elasticity coupled with damage [L & C. 19901.

The one-dimensional continuous damage variable of the laminate is defined by

D = I - E =D=J- •

E, I + (Li((n-- 1))(EDh0 !Et lha)

CR'OPFAN JOURNAL OF PFCHANICS A SOLIDS, VOL 11. ,- 3. 1992
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The same approximations za, in Section 5 Nhoi tht the liititn %aJue ot 1) Is ot th1c
order of 0.5 %%hich corresponds to the brittle Li~er fullý daniiCd kl i,,h ý, ducILeL\ I~,-cr
undamnaged,

The one-dimensional la\% of elasticit\ of the hornoveni•ed l.tminate i,

•,= E, ( I- DM

This law can be used for structural calculations in engineering applications The oerall
behavior resulting from the elasticit\. cracking of the brittle laver dehondine of the
interface and yieldingz of the ductile la',er is represented in figure 12. It has to be compared
witch the experimental stres,-strrain curve depicted in Figure 9 of section 3 3. The main
difference is the irreversible strains existing in the experiment that the model doe-, not
take into account before the yielding of the ductile layer. The\ ar- due to initial residual
stresses [L & D. 1988J.

E.

0

Fig. 12. - Schematic tenmiic curie as mtWelld.

APPLICATION TO A PURE BENDIN6 PROBLEM

As an exercise, let us derive the pure bending eqution of a damaged beam by a fixed
value of the damage D which reduces the elasticity modulus to E, 0 - D) in tension
but does not affect the compression behavior because of 4hc crack closure phenomenon.
Then the constitutive equation is

* if _
E, ( D11 - D

- if o'<0
E,

Il OP[A% ~l•R%• O• F{'•NIb , g¢LIL• \ 11I , 3, 1992



This is a classical beam problem solved with Bernoulli's h.pothest, Assuming also a
rectangular cross-section with the notations of Figure I

R

If R is the curvature and v the beam deflection

R = d2v
dxr

The equilibrium of the forces in the x, direction gives the position of the neutral axis
in the thickness 2t of the beam defined by -h, <x, <h, with h, -+hJ=2t

I1- I1-D

h,=2t
C7 I (X3) dx3; = • , 2 2 - , I -N I

D

where the edge h, is in tension and h2 in compression. The equilibrium of moments gives

the beam equation: al (x3)x 3 dx3 +M=O, d2 y/dx.=M/E, IAD where I is the

0

O.IUD

Fig. 13. - Damaging correction function for pure bending of beams.

bending inertia of the beam section and A the damage function represented in Figure 13.

It is also possible to consider the coupled problem of damage induced by the bending
but only by means of a numerical analysis. A closed form solution could not be found.

EUROPEAN JOURNAL OF MECHANICS. A SOLID1S. VOL II. W 3. 1992
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